Related Plugins and Tags

QGIS Planet

GTFS algorithms about to land in Trajectools

Trajectools continues growing. Lately, we have started expanding towards public transport analysis. The algorithms available through the current Trajectools development version are courtesy of the gtfs_functions library.

There are a couple of existing plugins that deal with GTFS. However, in my experience, they either don’t integrate with Processing and/or don’t provide the functions I was expecting.

So far, we have two GTFS algorithms to cover essential public transport analysis needs:

The “Extract shapes” algorithm gives us the public transport routes:

The “Extract segments” algorithm has one more options. In addition to extracting the segments between public transport stops, it can also enrich the segments with the scheduled vehicle speeds:

Here you can see the scheduled speeds:

To show the stops, we can put marker line markers on the segment start and end locations:

The segments contain route information and stop names, so these can be extracted and used for labeling as well:

If you want to reproduce the above examples, grab the open Vorarlberg public transport schedule GTFS.

These developments are supported by the Emeralds Horizon Europe project.

Mapping Neo4j spatial nodes with GeoPandas

In the recent post Setting up a graph db using GTFS data & Neo4J, we noted that — unfortunately — Neomap is not an option to visualize spatial nodes anymore.

GeoPandas to the rescue!

But first we need the neo4j Python driver:

pip install neo4j

Then we can connect to our database. The default user name is neo4j and you get to pick the password when creating the database:

from neo4j import GraphDatabase

URI = "neo4j://localhost"
AUTH = ("neo4j", "password")

with GraphDatabase.driver(URI, auth=AUTH) as driver:
    driver.verify_connectivity()

Once we have confirmed that the connection works as expected, we can run a query:

QUERY = "MATCH (p:Stop) RETURN p.name AS name, p.location AS geom"

records, summary, keys = driver.execute_query(
    QUERY, database_="neo4j",
)

for rec in records:
    print(rec)

Nice. There we have our GTFS stops, their names and their locations. But how to put them on a map?

Conveniently, there is a to_db() function in the Neo4j driver:

import geopandas as gpd
import numpy as np

with driver.session(database="neo4j") as session:
    tx = session.begin_transaction()
    results = tx.run(QUERY)
    df = results.to_df(expand=True)
    df = df[df["geom[].0"]>0]
    gdf = gpd.GeoDataFrame(
        df['name'], crs=4326,
        geometry=gpd.points_from_xy(df['geom[].0'], df['geom[].1']))
    print(gdf)

tx.close() 

Since some of the nodes lack geometries, I added a quick and dirty hack to get rid of these nodes because — otherwise — gdf.explore() will complain about None geometries.

You can find this notebook at: https://github.com/anitagraser/QGIS-resources/blob/1e4ea435c9b1795ba5b170ddb176aa83689112eb/qgis3/notebooks/neo4j.ipynb

Next step will have to be the relationships. Stay posted.

Setting up a graph db using GTFS data & Neo4J

In a recent post, we looked into a graph-based model for maritime mobility data and how it may be represented in Neo4J. Today, I want to look into another type of mobility data: public transport schedules in GTFS format.

In this post, I’ll be using the public GTFS data for Riga since Riga is one of the demo sites for our current EMERALDS research project.

The workflow is heavily inspired by Bert Radke‘s post “Loading the UK GTFS data feed” from 2021 and his import Cypher script which I used as a template, adjusted to the requirements of the Riga dataset, and updated to recent Neo4J changes.

Here we go.

Since a GTFS export is basically a ZIP archive full of CSVs, we will be making good use of Neo4Js CSV loading capabilities. The basic script for importing the stops file and creating point geometries from lat and lon values would be:

LOAD CSV with headers 
FROM "file:///stops.txt" 
AS row 
CREATE (:Stop {
   stop_id: row["stop_id"],
   name: row["stop_name"], 
   location: point({
    longitude: toFloat(row["stop_lon"]),
    latitude: toFloat(row["stop_lat"])
    })
})

This requires that the stops.txt is located in the import directory of your Neo4J database. When we run the above script and the file is missing, Neo4J will tell us where it tried to look for it. In my case, the directory ended up being:

C:\Users\Anita\.Neo4jDesktop\relate-data\dbmss\dbms-72882d24-bf91-4031-84e9-abd24624b760\import

So, let’s put all GTFS CSVs into that directory and we should be good to go.

Let’s start with the agency file:

load csv with headers from
'file:///agency.txt' as row
create (a:Agency {
   id: row.agency_id, 
   name: row.agency_name, 
   url: row.agency_url, 
   timezone: row.agency_timezone, 
   lang: row.agency_lang
});

… Added 1 label, created 1 node, set 5 properties, completed after 31 ms.

The routes file does not include agency info but, luckily, there is only one agency, so we can hard-code it:

load csv with headers from
'file:///routes.txt' as row
match (a:Agency {id: "rigassatiksme"})
create (a)-[:OPERATES]->(r:Route {
   id: row.route_id, 
   shortName: row.route_short_name,
   longName: row.route_long_name, 
   type: toInteger(row.route_type)
});

… Added 81 labels, created 81 nodes, set 324 properties, created 81 relationships, completed after 28 ms.

From stops, I’m removing non-existent or empty columns:

load csv with headers from
'file:///stops.txt' as row
create (s:Stop {
   id: row.stop_id, 
   name: row.stop_name, 
   location: point({
      latitude: toFloat(row.stop_lat), 
      longitude: toFloat(row.stop_lon)
   }),
   code: row.stop_code
});

… Added 1671 labels, created 1671 nodes, set 5013 properties, completed after 71 ms.

From trips, I’m also removing non-existent or empty columns:

load csv with headers from
'file:///trips.txt' as row
match (r:Route {id: row.route_id})
create (r)<-[:USES]-(t:Trip {
   id: row.trip_id, 
   serviceId: row.service_id,
   headSign: row.trip_headsign, 
   direction_id: toInteger(row.direction_id),
   blockId: row.block_id,
   shapeId: row.shape_id
});

… Added 14427 labels, created 14427 nodes, set 86562 properties, created 14427 relationships, completed after 875 ms.

Slowly getting there. We now have around 16k nodes in our graph:

Finally, it’s stop times time. This is where the serious information is. This file is much larger than all previous ones with over 300k lines (i.e. times when an PT vehicle stops).

This requires another tweak to Bert’s script since using periodic commit is not supported anymore: The PERIODIC COMMIT query hint is no longer supported. Please use CALL { … } IN TRANSACTIONS instead. So I ended up using the following, based on https://community.neo4j.com/t/best-practice-for-replacement-of-using-periodic-commit-to-call-in-transactions/48636/2:

:auto
load csv with headers from
'file:///stop_times.txt' as row
CALL { with row
match (t:Trip {id: row.trip_id}), (s:Stop {id: row.stop_id})
create (t)<-[:BELONGS_TO]-(st:StopTime {
   arrivalTime: row.arrival_time, 
   departureTime: row.departure_time,
   stopSequence: toInteger(row.stop_sequence)})-[:STOPS_AT]->(s)
} IN TRANSACTIONS OF 10 ROWS;

… Added 351388 labels, created 351388 nodes, set 1054164 properties, created 702776 relationships, completed after 1364220 ms.

As you can see, this took a while. But now we have all nodes in place:

The final statement adds additional relationships between consecutive stop times:

call apoc.periodic.iterate('match (t:Trip) return t',
'match (t)<-[:BELONGS_TO]-(st) with st order by st.stopSequence asc
with collect(st) as stops
unwind range(0, size(stops)-2) as i
with stops[i] as curr, stops[i+1] as next
merge (curr)-[:NEXT_STOP]->(next)', {batchmode: "BATCH", parallel:true, parallel:true, batchSize:1});

This fails with: There is no procedure with the name apoc.periodic.iterate registered for this database instance. Please ensure you've spelled the procedure name correctly and that the procedure is properly deployed.

So, let’s install APOC. That’s a plugin which we can install into our database from within Neo4J Desktop:

After restarting the db, we can run the query:

No errors. Sounds good.

Let’s have a look at what we ended up with. Here are 25 random Trips. I expanded one of them to show its associated StopTimes. We can see the relations between consecutive StopTimes and I’ve expanded the final five StopTimes to show their linked Stops:

I also wanted to visualize the stops on a map. And there used to be a neat app called Neomap which can be installed easily:

However, Neomap does not seem to be compatible with the latest Neo4J:

So this final step will have to wait for another time.

  • Page 1 of 1 ( 3 posts )
  • gtfs

Back to Top

Sustaining Members