Related Plugins and Tags

QGIS Planet

Reducing magic in Ruby's Forwardable class implementation

Abstract

Using string-eval in Ruby for metaprogramming is unnecessarily obscuring. Ruby’s more modern and specific metaprogramming methods should be used instead whenever possible. This problem is illustrated on the example of Ruby’s Forwardable class.

In detail…

Ruby’s Forwardable class is using metaprogramming to forward calls from a frontend interface to an instance in the back executing the call.

Metaprogramming is the discipline of making code that creates code. This task allready is rather abstract and hard to grasp in itself. Having hard to grasp code is a liability. One of the goals of writing code is allways to keep the code as simple and as well understandable as possible.

Additionaly, metaprogramming code itself is difficult to read and understand: that is because the metaprogramming code will not necessarily express what the code it is creating is about, but only how it is creating that code. As such the code it is creating can be invisible to you as a reader of the source code - the created code will only start to exist at runtime.

One would therefore expect that programmers would try especially hard when they metaprogram to make that particular kind of code expressive and easy to understand.

Another consequence of the fact that the code produced by metaprogramming is not necessarily visible, is that debugging becomes more difficult: when analyzing problems you’ll not only be unsure how the programm works, but in addition, you won’t even be sure how the code that is executed looks like - since it is only generated at runtime.

This post is focusing on the last problem: debugging of metaprogrammed code.

There are two approaches to metaprogramming. One is to have as far as possible compile-time parseable code and the other is to let the code only be parsed at runtime.

As of version 1.9.2, Ruby’s Forwardable class is using the latter. The metaprogramming code in Ruby 1.8.7 looks like this:

    module_eval(<

As said, this has the consequence of the metaprogrammed code being completely invisible to the parser and other tools such as editors and debuggers.

This results in the following:

$ cat queue.rb
require 'rubygems'
require 'forwardable'
require 'ruby-debug'

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Queue.new
debugger # ------ DEBUGGING FROM HERE ON -----
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first


$ ruby queue.rb

queue.rb:24
q.enq 1, 2, 3, 4, 5

(rdb:1) step
(__FORWARDABLE__):2

(rdb:1) list =
*** No sourcefile available for (__FORWARDABLE__)

(rdb:1) step
(__FORWARDABLE__):3

In other words, you are rather lost allready - otherwise you probably wouldn’t be stepping through your code - and in that situation it happens that your debugger gets completely lost as well, since it does not know any more where in the code it is and what it exactly is executing.

That’s nothing the programmer wishes for. In a situation where you are debugging you want to have a maximally clear view of all state, including what code you are currently executing.

Chaning that situation requires making as much of the metaprogrammed code visible to the parser, which is the second approach to metaprogramming mentioned previously:

$ cat forwardable2.rb
...
    self.send(:define_method, ali) do |*args,█|
      begin
        instance_variable_get(accessor).__send__(method, *args,█)
      rescue Exception
        [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
        Kernel::raise
      end
    end

Note that it’s the same code as before, except that we do not do eval("string") any more, but instead are using specific, more modern metaprogramming tools provided by standard Ruby.

The result is the following:

$ ruby queue.rb

queue.rb:22
q.enq 1, 2, 3, 4, 5

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:149
begin

(rdb:1) list =
[144, 153] in /usr/lib/ruby/1.8/forwardable2.rb
   144      accessor = accessor.id2name if accessor.kind_of?(Integer)
   145      method = method.id2name if method.kind_of?(Integer)
   146      ali = ali.id2name if ali.kind_of?(Integer)
   147
   148      self.send(:define_method, ali) do |*args,█|
=> 149        begin
   150          instance_variable_get(accessor).__send__(method, *args,█)
   151        rescue Exception
   152          [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
   153          Kernel::raise

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:150
instance_variable_get(accessor).__send__(method, *args,█)

Allready much, much better.

Of course, with the string-eval approach to metaprogramming Ruby itself could do better by saving the string that is being evaled to be able to refer to it later at step-through time. However currently we don’t have this option.

Tomáš Pospíšek

Reducing magic in Ruby's Forwardable class implementation

Abstract

Using string-eval in Ruby for metaprogramming is unnecessarily obscuring. Ruby’s more modern and specific metaprogramming methods should be used instead whenever possible. This problem is illustrated on the example of Ruby’s Forwardable class.

In detail…

Ruby’s Forwardable class is using metaprogramming to forward calls from a frontend interface to an instance in the back executing the call.

Metaprogramming is the discipline of making code that creates code. This task allready is rather abstract and hard to grasp in itself. Having hard to grasp code is a liability. One of the goals of writing code is allways to keep the code as simple and as well understandable as possible.

Additionaly, metaprogramming code itself is difficult to read and understand: that is because the metaprogramming code will not necessarily express what the code it is creating is about, but only how it is creating that code. As such the code it is creating can be invisible to you as a reader of the source code - the created code will only start to exist at runtime.

One would therefore expect that programmers would try especially hard when they metaprogram to make that particular kind of code expressive and easy to understand.

Another consequence of the fact that the code produced by metaprogramming is not necessarily visible, is that debugging becomes more difficult: when analyzing problems you’ll not only be unsure how the programm works, but in addition, you won’t even be sure how the code that is executed looks like - since it is only generated at runtime.

This post is focusing on the last problem: debugging of metaprogrammed code.

There are two approaches to metaprogramming. One is to have as far as possible compile-time parseable code and the other is to let the code only be parsed at runtime.

As of version 1.9.2, Ruby’s Forwardable class is using the latter. The metaprogramming code in Ruby 1.8.7 looks like this:

    module_eval(<

As said, this has the consequence of the metaprogrammed code being completely invisible to the parser and other tools such as editors and debuggers.

This results in the following:

$ cat queue.rb
require 'rubygems'
require 'forwardable'
require 'ruby-debug'

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Queue.new
debugger # ------ DEBUGGING FROM HERE ON -----
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first


$ ruby queue.rb

queue.rb:24
q.enq 1, 2, 3, 4, 5

(rdb:1) step
(__FORWARDABLE__):2

(rdb:1) list =
*** No sourcefile available for (__FORWARDABLE__)

(rdb:1) step
(__FORWARDABLE__):3

In other words, you are rather lost allready - otherwise you probably wouldn’t be stepping through your code - and in that situation it happens that your debugger gets completely lost as well, since it does not know any more where in the code it is and what it exactly is executing.

That’s nothing the programmer wishes for. In a situation where you are debugging you want to have a maximally clear view of all state, including what code you are currently executing.

Chaning that situation requires making as much of the metaprogrammed code visible to the parser, which is the second approach to metaprogramming mentioned previously:

$ cat forwardable2.rb
...
    self.send(:define_method, ali) do |*args,█|
      begin
        instance_variable_get(accessor).__send__(method, *args,█)
      rescue Exception
        [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
        Kernel::raise
      end
    end

Note that it’s the same code as before, except that we do not do eval("string") any more, but instead are using specific, more modern metaprogramming tools provided by standard Ruby.

The result is the following:

$ ruby queue.rb

queue.rb:22
q.enq 1, 2, 3, 4, 5

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:149
begin

(rdb:1) list =
[144, 153] in /usr/lib/ruby/1.8/forwardable2.rb
   144      accessor = accessor.id2name if accessor.kind_of?(Integer)
   145      method = method.id2name if method.kind_of?(Integer)
   146      ali = ali.id2name if ali.kind_of?(Integer)
   147
   148      self.send(:define_method, ali) do |*args,█|
=> 149        begin
   150          instance_variable_get(accessor).__send__(method, *args,█)
   151        rescue Exception
   152          [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
   153          Kernel::raise

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:150
instance_variable_get(accessor).__send__(method, *args,█)

Allready much, much better.

Of course, with the string-eval approach to metaprogramming Ruby itself could do better by saving the string that is being evaled to be able to refer to it later at step-through time. However currently we don’t have this option.

Tomáš Pospíšek

Reducing magic in Ruby's Forwardable class implementation

Abstract

Using string-eval in Ruby for metaprogramming is unnecessarily obscuring. Ruby’s more modern and specific metaprogramming methods should be used instead whenever possible. This problem is illustrated on the example of Ruby’s Forwardable class.

In detail…

Ruby’s Forwardable class is using metaprogramming to forward calls from a frontend interface to an instance in the back executing the call.

Metaprogramming is the discipline of making code that creates code. This task allready is rather abstract and hard to grasp in itself. Having hard to grasp code is a liability. One of the goals of writing code is allways to keep the code as simple and as well understandable as possible.

Additionaly, metaprogramming code itself is difficult to read and understand: that is because the metaprogramming code will not necessarily express what the code it is creating is about, but only how it is creating that code. As such the code it is creating can be invisible to you as a reader of the source code - the created code will only start to exist at runtime.

One would therefore expect that programmers would try especially hard when they metaprogram to make that particular kind of code expressive and easy to understand.

Another consequence of the fact that the code produced by metaprogramming is not necessarily visible, is that debugging becomes more difficult: when analyzing problems you’ll not only be unsure how the programm works, but in addition, you won’t even be sure how the code that is executed looks like - since it is only generated at runtime.

This post is focusing on the last problem: debugging of metaprogrammed code.

There are two approaches to metaprogramming. One is to have as far as possible compile-time parseable code and the other is to let the code only be parsed at runtime.

As of version 1.9.2, Ruby’s Forwardable class is using the latter. The metaprogramming code in Ruby 1.8.7 looks like this:

    module_eval(<

As said, this has the consequence of the metaprogrammed code being completely invisible to the parser and other tools such as editors and debuggers.

This results in the following:

$ cat queue.rb
require 'rubygems'
require 'forwardable'
require 'ruby-debug'

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Queue.new
debugger # ------ DEBUGGING FROM HERE ON -----
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first


$ ruby queue.rb

queue.rb:24
q.enq 1, 2, 3, 4, 5

(rdb:1) step
(__FORWARDABLE__):2

(rdb:1) list =
*** No sourcefile available for (__FORWARDABLE__)

(rdb:1) step
(__FORWARDABLE__):3

In other words, you are rather lost allready - otherwise you probably wouldn’t be stepping through your code - and in that situation it happens that your debugger gets completely lost as well, since it does not know any more where in the code it is and what it exactly is executing.

That’s nothing the programmer wishes for. In a situation where you are debugging you want to have a maximally clear view of all state, including what code you are currently executing.

Chaning that situation requires making as much of the metaprogrammed code visible to the parser, which is the second approach to metaprogramming mentioned previously:

$ cat forwardable2.rb
...
    self.send(:define_method, ali) do |*args,█|
      begin
        instance_variable_get(accessor).__send__(method, *args,█)
      rescue Exception
        [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
        Kernel::raise
      end
    end

Note that it’s the same code as before, except that we do not do eval("string") any more, but instead are using specific, more modern metaprogramming tools provided by standard Ruby.

The result is the following:

$ ruby queue.rb

queue.rb:22
q.enq 1, 2, 3, 4, 5

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:149
begin

(rdb:1) list =
[144, 153] in /usr/lib/ruby/1.8/forwardable2.rb
   144      accessor = accessor.id2name if accessor.kind_of?(Integer)
   145      method = method.id2name if method.kind_of?(Integer)
   146      ali = ali.id2name if ali.kind_of?(Integer)
   147
   148      self.send(:define_method, ali) do |*args,█|
=> 149        begin
   150          instance_variable_get(accessor).__send__(method, *args,█)
   151        rescue Exception
   152          [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
   153          Kernel::raise

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:150
instance_variable_get(accessor).__send__(method, *args,█)

Allready much, much better.

Of course, with the string-eval approach to metaprogramming Ruby itself could do better by saving the string that is being evaled to be able to refer to it later at step-through time. However currently we don’t have this option.

Tomáš Pospíšek

Reducing magic in Ruby's Forwardable class implementation

Abstract

Using string-eval in Ruby for metaprogramming is unnecessarily obscuring. Ruby’s more modern and specific metaprogramming methods should be used instead whenever possible. This problem is illustrated on the example of Ruby’s Forwardable class.

In detail…

Ruby’s Forwardable class is using metaprogramming to forward calls from a frontend interface to an instance in the back executing the call.

Metaprogramming is the discipline of making code that creates code. This task allready is rather abstract and hard to grasp in itself. Having hard to grasp code is a liability. One of the goals of writing code is allways to keep the code as simple and as well understandable as possible.

Additionaly, metaprogramming code itself is difficult to read and understand: that is because the metaprogramming code will not necessarily express what the code it is creating is about, but only how it is creating that code. As such the code it is creating can be invisible to you as a reader of the source code - the created code will only start to exist at runtime.

One would therefore expect that programmers would try especially hard when they metaprogram to make that particular kind of code expressive and easy to understand.

Another consequence of the fact that the code produced by metaprogramming is not necessarily visible, is that debugging becomes more difficult: when analyzing problems you’ll not only be unsure how the programm works, but in addition, you won’t even be sure how the code that is executed looks like - since it is only generated at runtime.

This post is focusing on the last problem: debugging of metaprogrammed code.

There are two approaches to metaprogramming. One is to have as far as possible compile-time parseable code and the other is to let the code only be parsed at runtime.

As of version 1.9.2, Ruby’s Forwardable class is using the latter. The metaprogramming code in Ruby 1.8.7 looks like this:

    module_eval(<

As said, this has the consequence of the metaprogrammed code being completely invisible to the parser and other tools such as editors and debuggers.

This results in the following:

$ cat queue.rb
require 'rubygems'
require 'forwardable'
require 'ruby-debug'

class Queue
  extend Forwardable

  def initialize
    @q = [ ]    # prepare delegate object
  end

  # setup preferred interface, enq() and deq()...
  def_delegator :@q, :push, :enq
  def_delegator :@q, :shift, :deq

  # support some general Array methods that fit Queues well
  def_delegators :@q, :clear, :first, :push, :shift, :size
end

q = Queue.new
debugger # ------ DEBUGGING FROM HERE ON -----
q.enq 1, 2, 3, 4, 5
q.push 6

q.shift    # => 1
while q.size > 0
  puts q.deq
end

q.enq "Ruby", "Perl", "Python"
puts q.first
q.clear
puts q.first


$ ruby queue.rb

queue.rb:24
q.enq 1, 2, 3, 4, 5

(rdb:1) step
(__FORWARDABLE__):2

(rdb:1) list =
*** No sourcefile available for (__FORWARDABLE__)

(rdb:1) step
(__FORWARDABLE__):3

In other words, you are rather lost allready - otherwise you probably wouldn’t be stepping through your code - and in that situation it happens that your debugger gets completely lost as well, since it does not know any more where in the code it is and what it exactly is executing.

That’s nothing the programmer wishes for. In a situation where you are debugging you want to have a maximally clear view of all state, including what code you are currently executing.

Chaning that situation requires making as much of the metaprogrammed code visible to the parser, which is the second approach to metaprogramming mentioned previously:

$ cat forwardable2.rb
...
    self.send(:define_method, ali) do |*args,█|
      begin
        instance_variable_get(accessor).__send__(method, *args,█)
      rescue Exception
        [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
        Kernel::raise
      end
    end

Note that it’s the same code as before, except that we do not do eval("string") any more, but instead are using specific, more modern metaprogramming tools provided by standard Ruby.

The result is the following:

$ ruby queue.rb

queue.rb:22
q.enq 1, 2, 3, 4, 5

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:149
begin

(rdb:1) list =
[144, 153] in /usr/lib/ruby/1.8/forwardable2.rb
   144      accessor = accessor.id2name if accessor.kind_of?(Integer)
   145      method = method.id2name if method.kind_of?(Integer)
   146      ali = ali.id2name if ali.kind_of?(Integer)
   147
   148      self.send(:define_method, ali) do |*args,█|
=> 149        begin
   150          instance_variable_get(accessor).__send__(method, *args,█)
   151        rescue Exception
   152          [email protected]_if{|s| /^\\(__FORWARDABLE__\\):/ =~ s} unless Forwardable2::debug
   153          Kernel::raise

(rdb:1) step
/usr/lib/ruby/1.8/forwardable2.rb:150
instance_variable_get(accessor).__send__(method, *args,█)

Allready much, much better.

Of course, with the string-eval approach to metaprogramming Ruby itself could do better by saving the string that is being evaled to be able to refer to it later at step-through time. However currently we don’t have this option.

Tomáš Pospíšek

Logging un-translated strings in rails

Problem statement:

Which of our strings are not translated yet in our Ruby on Rails app?

Unfortunately there’s no easy way to know for sure. One solution is to log untranslated strings as soon as they appear - the following solution applies to the spree-i18n extension but should be easily adaptable to other contexts.

What we do here is monkey patching I18n#t, to check whether the original I18n#t told us that there’s no translation and log it in that case. Then we return whatever the original I18n#t gave us:

I18n.class_eval do                                                                                    

      class << self                                                                                   
        alias_method :alias_for_t, :t                                                                 
      end                                                                                             

      # make t log missing translations                                                               
      def self.t( keyz, options = {})                                                                 
        translation = self.alias_for_t( keyz, options )                                               
        if translation =~ /translation missing:/                                                      
          MISSING_TRANSLATION.info translation                                                        
        end                                                                                           
        return translation                                                                            
      end                                                                                             
    end                                                                                               

end

To initialize the logger:

class MissingTranslationLogger < Logger
  def format_message(severity, timestamp, progname, msg)
    "#{msg}\n" 
  end 
end

logfile = File.open('log/missing_translations.log', 'a')    
# optional: # logfile.sync = true
MISSING_TRANSLATION = MissingTranslationLogger.new(logfile)

You’ll need to place those two code snipplets in apropriate places. I’ve put the first one in vendor/extensions/site/site_extension.rb and the second one into config/initializers/missing_translation_logger.rb.

Hope somebody’ll find this snippet useful.

Tomáš Pospíšek

Back to Top

Sustaining Members