Related Plugins and Tags

QGIS Python Plugins Repository

Historical Map Plugin icon

Plugin ID: 930
(30) votes 

Automatic vectorization of old forests from historical maps

Made by Nicolas Karasiak & Antoine Lomellini
Based on the work of Pierre-Alexis with the help of Mathieu Fauvel.

This plugin allow the user to filter an image (tif) with closing filter and median filter (you can set the parameters), then you can train with a shapefile of your perimeter, and to finish you get a shapefile with your selected class (ie: a shapefile of the forest from historical map, or of the vineyards...)

We suggest you to install SciKit-Learn before installing the plugin (or you will be forced to use GMM classifier and not KNN,RF or SVM).
For more information you can consult our tutorial at the Historical Map plugin page.

Author
Nicolas Karasiak, Antoine Lomellini
Maintainer
lennepkade
Tags
filterclassificationforestold mapclassifyrandom forestgmmhistorical map
Plugin home page
https://github.com/lennepkade/HistoricalMap/
Tracker
Browse and report bugs
Code repository
https://github.com/lennepkade/HistoricalMap/
Latest stable version
1.1.5
Latest experimental version:
1.0.2
Plugin ID
930
Version Experimental Min QGIS version Max QGIS version Downloads Uploaded by Date
1.1.5 no 2.0.0 2.99.0 10608 lennepkade 2016-10-14T08:08:03.060613+00:00
1.1.4 no 2.0.0 2.99.0 1039 lennepkade 2016-10-06T15:15:04.805519+00:00
1.1 no 2.0.0 2.99.0 771 lennepkade 2016-10-05T08:27:36.134668+00:00
1.0.2 yes 2.0.0 2.99.0 2373 lennepkade 2016-04-22T13:00:49.734307+00:00
1.0.1 yes 2.0.0 2.99.0 845 lennepkade 2016-02-26T11:07:35.829610+00:00
1.0 yes 2.0.0 2.99.0 635 lennepkade 2016-02-22T13:21:41.870060+00:00
0.5.2 yes 2.0.0 2.99.0 548 lennepkade 2016-02-20T18:53:51.483051+00:00
0.5.1 yes 2.0.0 2.99.0 579 lennepkade 2016-02-20T10:31:38.115223+00:00
0.5 yes 2.0.0 2.99.0 697 lennepkade 2016-02-15T13:16:42.962358+00:00
0.3.2 yes 2.0.0 2.99.0 683 lennepkade 2016-02-12T16:37:42.159869+00:00
0.3 yes 2.0.0 2.99.0 620 lennepkade 2016-02-12T14:58:14.825714+00:00

Sustaining Members