Related Plugins and Tags

QGIS Python Plugins Repository

Historical Map Plugin icon

Plugin ID: 930
(30) votes 

Automatic vectorization of old forests from historical maps

Made by Nicolas Karasiak & Antoine Lomellini
Based on the work of Pierre-Alexis with the help of Mathieu Fauvel.

This plugin allow the user to filter an image (tif) with closing filter and median filter (you can set the parameters), then you can train with a shapefile of your perimeter, and to finish you get a shapefile with your selected class (ie: a shapefile of the forest from historical map, or of the vineyards...)

We suggest you to install SciKit-Learn before installing the plugin (or you will be forced to use GMM classifier and not KNN,RF or SVM).
For more information you can consult our tutorial at the Historical Map plugin page.

Author
Nicolas Karasiak, Antoine Lomellini
Maintainer
lennepkade
Tags
filterclassificationforestold mapclassifyrandom forestgmmhistorical map
Plugin home page
https://github.com/lennepkade/HistoricalMap/
Tracker
Browse and report bugs
Code repository
https://github.com/lennepkade/HistoricalMap/
Latest stable version
1.1.5
Latest experimental version:
1.0.2
Plugin ID
930
Version Experimental Min QGIS version Max QGIS version Downloads Uploaded by Date
1.1.5 no 2.0.0 2.99.0 10550 lennepkade 2016-10-14T08:08:03.060613+00:00
1.1.4 no 2.0.0 2.99.0 1012 lennepkade 2016-10-06T15:15:04.805519+00:00
1.1 no 2.0.0 2.99.0 763 lennepkade 2016-10-05T08:27:36.134668+00:00
1.0.2 yes 2.0.0 2.99.0 2362 lennepkade 2016-04-22T13:00:49.734307+00:00
1.0.1 yes 2.0.0 2.99.0 839 lennepkade 2016-02-26T11:07:35.829610+00:00
1.0 yes 2.0.0 2.99.0 630 lennepkade 2016-02-22T13:21:41.870060+00:00
0.5.2 yes 2.0.0 2.99.0 543 lennepkade 2016-02-20T18:53:51.483051+00:00
0.5.1 yes 2.0.0 2.99.0 575 lennepkade 2016-02-20T10:31:38.115223+00:00
0.5 yes 2.0.0 2.99.0 694 lennepkade 2016-02-15T13:16:42.962358+00:00
0.3.2 yes 2.0.0 2.99.0 678 lennepkade 2016-02-12T16:37:42.159869+00:00
0.3 yes 2.0.0 2.99.0 616 lennepkade 2016-02-12T14:58:14.825714+00:00

Sustaining Members