This tool creates a raster grid based on a Delaunay triangular irregular network (TIN) fitted to LiDAR points. The output grid can be based on any of the stored LiDAR point parameters (parameter), including elevation (in which case the output grid is a digital elevation model, DEM), intensity, class, return number, number of returns, scan angle, RGB (colour) values, and user data values. Similarly, the user may specify which point return values (returns) to include in the interpolation, including all points, last returns (including single return points), and first returns (including single return points).

The user must specify the grid resolution of the output raster (resolution), and optionally, the name of the input LiDAR file (input) and output raster (output). Note that if an input LiDAR file (input) is not specified by the user, the tool will search for all valid LiDAR (.las, .laz, *.zlidar) files contained within the current working directory. This feature can be very useful when you need to interpolate a DEM for a large number of LiDAR files. Not only does this batch processing mode enable the tool to run in a more optimized parallel manner, but it will also allow the tool to include a small buffer of points extending into adjacent tiles when interpolating an individual file. This can significantly reduce edge-effects when the output tiles are later mosaicked together. When run in this batch mode, the output file (output) also need not be specified; the tool will instead create an output file with the same name as each input LiDAR file, but with the .tif extension. This can provide a very efficient means for processing extremely large LiDAR data sets.

Users may excluded points from the interpolation based on point classification values, which follow the LAS classification scheme. Excluded classes are specified using the exclude_cls parameter. For example, to exclude all vegetation and building classified points from the interpolation, use --exclude_cls='3,4,5,6'. Users may also exclude points from the interpolation if they fall below or above the minimum (minz) or maximum (maxz) thresholds respectively. This can be a useful means of excluding anomalously high or low points. Note that points that are classified as low points (LAS class 7) or high noise (LAS class 18) are automatically excluded from the interpolation operation.

Triangulation will generally completely fill the convex hull containing the input point data. This can sometimes result in very long and narrow triangles at the edges of the data or connecting vertices on either side of void areas. In LiDAR data, these void areas are often associated with larger waterbodies, and triangulation can result in very unnatural interpolated patterns within these areas. To avoid this problem, the user may specify a the maximum allowable triangle edge length (max_triangle_edge_length) and all grid cells within triangular facets with edges larger than this threshold are simply assigned the NoData values in the output DSM. These NoData areas can later be better dealt with using the fill_missing_data tool after interpolation.

See Also

lidar_idw_interpolation, lidar_nearest_neighbour_gridding, lidar_tin_gridding, filter_lidar_classes, fill_missing_data

Function Signature

def lidar_tin_gridding(self, input_lidar: Optional[Lidar], interpolation_parameter: str = "elevation", returns_included: str = "all", cell_size: float = 1.0, excluded_classes: List[int] = None, min_elev: float = float('-inf'), max_elev: float = float('inf'), max_triangle_edge_length: float = float('inf')) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW