This tool can be used to perform a mass flux calculation using DEM-based surface flow-routing techniques. For example, it could be used to model the distribution of sediment or phosphorous within a catchment. Flow-routing is based on a D-Infinity flow pointer derived from an input DEM (dem). The user must also specify the names of loading (loading), efficiency (efficiency), and absorption (absorption) rasters, as well as the output raster. Mass Flux operates very much like a flow-accumulation operation except that rather than accumulating catchment areas the algorithm routes a quantity of mass, the spatial distribution of which is specified within the loading image. The efficiency and absorption rasters represent spatial distributions of losses to the accumulation process, the difference being that the efficiency raster is a proportional loss (e.g. only 50% of material within a particular grid cell will be directed downslope) and the absorption raster is an loss specified as a quantity in the same units as the loading image. The efficiency image can range from 0 to 1, or alternatively, can be expressed as a percentage. The equation for determining the mass sent from one grid cell to a neighbouring grid cell is:

Outflowing Mass = (Loading - Absorption + Inflowing Mass) × Efficiency

This tool assumes that each of the three input rasters have the same number of rows and columns and that any NoData cells present are the same among each of the inputs.

See Also

d8_mass_flux

Function Signature

def dinf_mass_flux(self, dem: Raster, loading: Raster, efficiency: Raster, absorption: Raster) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW