This tool characterizes the spatial distribution of the average normal vector angular deviation, a measure of surface roughness. Working in the field of 3D printing, Ko et al. (2016) defined a measure of surface roughness based on quantifying the angular deviations in the direction of the normal vector of a real surface from its ideal (i.e. smoothed) form. This measure of surface complexity is therefore in units of degrees. Specifically, roughness is defined in this study as the neighborhood-averaged difference in the normal vectors of the original DEM and a smoothed DEM surface. Smoothed surfaces are derived by applying a Gaussian blur of the same size as the neighborhood (filter).

The multiscale_roughness tool calculates the same measure of surface roughness, except that it is designed to work with multiple spatial scales.

Reference

Ko, M., Kang, H., ulrim Kim, J., Lee, Y., & Hwang, J. E. (2016, July). How to measure quality of affordable 3D printing: Cultivating quantitative index in the user community. In International Conference on Human-Computer Interaction (pp. 116-121). Springer, Cham.

Lindsay, J. B., & Newman, D. R. (2018). Hyper-scale analysis of surface roughness. PeerJ Preprints, 6, e27110v1.

See Also

multiscale_roughness, spherical_std_dev_of_normals, circular_variance_of_aspect

Function Signature

def average_normal_vector_angular_deviation(self, dem: Raster, filter_size: int = 11) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW