This tool performs a bivariate linear regression analysis on two input raster images. The first image (i1) is considered to be the independent variable while the second image (i2) is considered to be the dependent variable in the analysis. Both input images must share the same grid, as the coefficient requires a comparison of a pair of images on a grid-cell-by-grid-cell basis. The tool will output an HTML report (output) summarizing the regression model, an Analysis of Variance (ANOVA), and the significance of the regression coefficients. The regression residuals can optionally be output as a new raster image (out_residuals) and the user can also optionally specify to standardize the residuals (standardize).

Note that the analysis performs a linear regression; two variables may be strongly related by a non-linear association (e.g. a power function curve) which will lead to an apparently weak fitting regression model. In fact, non-linear relations are very common among spatial variables, e.g. terrain indices such as slope and contributing area. In such cases, it is advisable that the input images are transformed prior to the analysis.

NoData values in either of the two input images are ignored during the calculation of the correlation between images.

Example usage

import whitebox_workflow

See Also

image_correlation, image_correlation_neighbourhood_analysis

Function Signature

def image_regression(self, independent_variable: Raster, dependent_variable: Raster, output_html_file: str, standardize_residuals: bool = False, output_scattergram: bool = False, num_samples: int = 1000) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW