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1 INTRODUCTION
As  a  public  service  of  engineering  and  a  member  of  the  scientific  and 
technical network of the French Ministry for Sustainable Development, CETE 
Nord Picardie conducts studies for state departments and local authorities.

With  a  long  experience  in  transport  modeling  and  planning,  it  has  now 
become a specialist in mobility data collection and analysis.

In public transport  modeling and demand assignment,  the optimal  strategy 
method is often used for transit assignment. The objectives of this paper are 
to present the new Mint method, based on the optimal strategy method but 
overcoming some of its limitations  and to analyze implicit  assumptions on 
time tables on which theses two methods are based.

2 BACKGROUND
The concept of optimal strategies was introduced by Spiess - Florian in 1989. 

The model is based on the assumption that a user of public transport, who 
have a range of attractive strategies to get to their destination, will board in 
the first vehicle of an attractive line that comes to him.

This algorithm is designed for frequency based transit networks. It was first 
implemented  in  the  original  INRO  software  EMME  /  2,  and  is  currently 
available in various other modeling softwares.

The implementation of the algorithm consists of two steps:
• Start  from the  destination  and  identify  attractive  lines  to  get  to  this 

destination.
• Then distribute the demand, starting from the origin, and successively 

until the destination, in proportion to the frequency of attractive lines, 
starting from each node. 

3 LIMITS
Several  limitations  in  the  standard  implementation  of  the  algorithm  are 
identified :
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• L1  :  The  model  is  only  based  on  frequency  and  doesn't  take  into 
account travel times. As a consequence, if a change in travel times of 
one or several  lines does not  impact  the set  of  attractive line for a 
specific origin-destination,the distribution of flows between these lines 
remains  unchanged.  This  is  very  restricting  because  it  keeps  from 
evaluating the effect of a improvement in the commercial speed of a 
line, such as the introduction of a bus rapid transit.

• L2 :  Pedestrian links are considered as transit  lines with  an infinite 
frequency. Therefore, if in a node, both a set of lines and a walking link 
are attractive, the traffic will be fully assigned on the walking link. So, 
traffic distribution depends on how the network is described, especially 
on transfer nodes. For example, the two following descriptions of the 
same real  network lead to  different results:  a  single node where all 
lines  converge,  and  two  nodes  linked  by  a  small  (or  even  fictive) 
pedestrian  link  and  with  lines  split  between  the  two  nodes.  In  the 
second  case,  demand is  only  assigned  on  the  attractive  lines  of  a 
single node. 

• L3  :  Similarly,  once  a  line  has  been  chosen,  the  frequency  of  the 
downstream segment of  this  line is  considered infinite,  because the 
user is already in the vehicle. So, if another line is attractive on the next 
node, the user will remain in the vehicle even if the interchange saves 
time.

For  these  reasons,  INRO has  recently  introduced  in  the  latest  version  of 
Emme a transit  assignment  with  variant  procedures  overcoming some of 
these limitations. 

In the following, we propose another algorithm base on a new approach called 
Mint, overcoming these limitations.

4 OBJECTIVE OF THE MINT ALGORITHM
The aim of this new algorithm is, while keeping the basic principles of optimal 
strategies, to propose an adaptation to overcome the above limits:

• to take into account the travel time in the distribution of transit volumes 
between the attractive lines (limit L1), 

• to propose a distribution of volumes according to any attractive line, 
including transit lines and pedestrian links. (limit L2),

• to be able to provide a flow distribution between the line in which the 
user travel and another attractive line that starts at a later node(limit L3)

• to manage routes, auxiliary transit  only ,  which do not  focus all  the 
demand 

• to ensure continuity in the distribution of volumes functions, depending 
on frequencies and travel times. 

• to improve the convergence of an iterative algorithm, which takes into 
account the capacity constraints.
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4.1 Principles

• If a line is attractive, a fraction of the corresponding demand must be 
assigned to the line.

• If the travel time of a line is improved, even if  the set of lines attractive 
does not change, an additional fraction of demand must be assigned to 
the line. 

• The basis of optimal strategies must be maintained, without introducing 
additional parameter nor variable nor method of selection of additional 
routes 

4.2 First computation elements:

5 ALGORITHM DESCRIPTION

Notations: 

− t : travel time

− hdw : headway

− v : proportion of flow assigned to the line

5.1 Example  1

• Optimal strategies
Both lines are attractive.  The distribution of flows is defined in proportion to 
the frequency (5 of 7 vehicles for line 1, 2 of 7 vehicles for line 2)

Line 1
hdw=12 min

Line 2
hdw=30 min

 t=20min

 t=20 min

V= 0.71

V= 0.29

Figure 1: optimal strategies, same travel times 

• Mint procedure
One of the main adaptations of optimal strategies concerns the distribution 
between attractive lines, that does not occur in proportion to the frequency. 
We need to compute combined frequencies differently

• Step 1: Combined frequencies calculation
Total travel time on line 1 varies from 20 and 32 minutes
Total travel time on line 2 varies from 20 and 50 minutes
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where Total travel time= travel time + waiting time
Then,  we  calculate  the  MINT  (MINimum  maximum  Time)  :  32  minutes 
(minimum of 32 and 50) 

Principle: If the expected travel time using the line 2 is greater than 32 
minutes, users will prefer to use the line 1 that guarantees a time of 32 
minutes maximum 

Line 1 : The sum of the attractive waiting times is 60 minutes (32-20)x5=12x5 
vehicles
Line 2 : The sum of the attractive waiting times is 24 minutes (32-20)x2=12x2 
vehicle arrivals, because if  the expected travel time using line 2 is greater 
than 32 minutes, passengers will choose the line 1

The waiting times for lines 1 and 2 taken independently,  lead to a total  of 
attractive waiting time of 84 minutes in an hour corresponding to 7 vehicles 
arrivals. By combining both lines, the sum of the attractive waiting time in an 
hour  must  be  60 minutes.  We had to  deal  with  an  extra  wait  time  of  24 
minutes.  The Mint  main hypothesis  consist  in  saving the same amount of 
waiting time for each inter-vehicle arrival,  that is 24 / 7 = 3.43 minutes by 
vehicle

The expected total travel time varies by combining both lines, between 20 
minutes and 28.57 minutes (28.57 = 32 – 3.43)

• Step 2: computing flows
In Mint, contributions of each line are calculated as follows: 

p i=
M −t i
hdw i

M :Minimum maximum time MINT 
t i:minimum travel time on line i
hdw i: headway on line i
p i: volume proportion on line i

As travel times are equal on both lines, the volumes on both lines follow the 
proportion of the frequency and the result is the same as optimal strategies.

• Step 3 : Expected travel time calculation
T=1

2∑i∈S
p imiM 

T =total expected travel time
p i=volume proportion on line i
S=the set of attractivelines

The  expected  travel  time  is  0.5*((28.57-20)/12)*(28.57+20)+((28.57-
20)/30)*(28.57+20)) 24.285 minutes
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If line 1 and line 2have the same travel time, both Mint and optimal strategies 
produce the same results in terms of flows distribution and expected travel 
time.
But, if travel time is smaller on line 2, it had sense that, compared to the 
situation in Figure 1, a higher proportion of passengers use the line 2 

5.2 Example 2

Line 1
hdw=12 min

Line 2
hdw=30 min

 t=20min

 t=15 min

Figure 3: Network example n°2
Considering  users  with  uniform  arrivals  and  perfectly  aware  of  the  transit 
network, their expected travel time is between :

• Line 1: between 20min and 32minutes
• Line 2: between 15min and 45 minutes

The minimum maximum time between both lines is 32minutes (20+12)

• Step 1: combined frequencies calculation
Line1 : total attractive waiting time(32-20)*5=60 minutes for 5 vehicles
Line 2 : total attractive waiting time (32-15)*2=34 minutes for 2 vehicles

So, by combining both lines, the total attractive waiting time in an hour must 
be of 60 minutes, which allows to save a waiting time of 34 / 7 = 4.86 minutes 
by bus.

The expected travel time varies in combining both lines between 20 minutes 
and (32-4.86)=27.14 minutes.
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Line 1
hdw=12 min

Line 2
hdw=30 min

 t=20min

 t=20 min

V= 0.71

V= 0.29

Figure 2: Mint algorithm, same travel time



• Step 2: computing flows
line 1=(27.14-20)/12=0.595
line 2=(27.14-15)/30=0.405

• Step 3: expected travel time computation
The  average  expected  travel  time:  0.5*((27.14-20)/12)*(27.14+20)+((27.14-
15)/30)*(27.14+15)) = 22.56 minutes
The travel time is lower than the one found in optimal strategies and the 
distribution of flow is also different. 

Results:

Line 1
hdw=12 min

Line 2
hdw=30 min

 t=20min

 t=15 min

V= 0.71

V= 0.29

Figure 4: Optimal strategies with equal travel times

In addition, we check the consistency of the model with the optimal strategy 
model : in the case of equal travel times the assignment only depends on the 
proportion of frequencies.
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Line 1
hdw=12 min

Line 2
hdw=30 min

 t=20min

 t=15 min

V= 0.60

V= 0.40

Figure 5: Mint Algorithm with different travel times



5.3 Application on a network of three lines, one of infinite frequency

• Network characteristics

• Definitions
t = travel time
hdw = headway
m = minimum travel time
M = MINT = minimum maximum time.
M' = minimum maximum time excluding walking strategies

• Step 1
We take the line with the smallest travel time 

• Step 2
We consider the next line with the smallest travel time :
This  is  line  1,  whose  travel  time  of  12  minutes  is  lower  than  the  current 
minimum maximum time (M = 40 min) : line 1 is attractive.
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Line 2
t=10min
hdw=30min

O min 10min

12min

20 min 32 min 40 min

m=10min M=40min
M'=40min

p= 40−10
30

=1

T=1. 1040
2

=25min

Line 1
t=12min 
hdw= 20min

Line 2
t=10min
hdw=30min

Walking
t=20min
hdw=0min

O min 10min

12min

20 min 32 min 40 min



Then, we determine the new minimum maximum time 

• Step 3
We take into account the combined frequencies of the two lines, reflecting the 
fact  that  the  sum  of  the  inter-vehicular  durations  of  both  lines  combined 
cannot exceed 60 minutes in an hour 

• Step 4
We consider the next line with the smallest travel time : line 3. Its frequency is 
infinite since it is a walk-only link. The travel time (20 min) is lower than the 
current minimum maximum time M '(23.2 min). So, the walk-only strategy is 
attractive
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Line 2
t=10min
hdw=30min

O min 10min

12min

20 min 32 min 40 min

m=10min MINT = minimum 
maximum time =32min

Line 1
t=12min 
hdw= 20min

Line 2
t=10min
hdw=30min

O min 10min

12min

20 min 32 min 40 min

m=10min M=23.2min
M'=23.2min

Line 1
t=12min 
hdw= 20min

23.2 min

p= 23.2−10
30

=0.44

p= 23.2−12
20

=0.56

T=0.56. 1023.22 0.44. 1223.22 =17.04min



The infinite frequency property requires special consideration of such a line.

The proportion of volume, for walking strategies are given by the following 
formulas. 

p i=M '−M ∑
i∈S

1
hdw i

=1−∑
i∈S

M−mi

hdw i

n i : number of vehciles per hour for line i
S : set of nonwalking attractive lines

We deduce the expected total travel time, and distribution according to the 
different lines. 
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Line 2
t=10min
hdw=30min

O min 10min

12min

20 min 32 min 40 min

m=10min M=23.2min
M'=23.2min

Line 1
t=12min 
hdw= 20min

23.2 min

p= 23.2−10
30

=0.44

p= 23.2−12
20

=0.56

T=0.56 . 1023.2
2

0.44 . 1223.2
2

=17.04min



6 CONSIDERATION ON WALKING LINKS

6.1 Two kinds of walking links
Walking links can be considered in two ways :

• Type 1: in a specific way. 
This method considers that the two strategies below equivalent (excluding 
weight of time and transfer ): 

L ' 1 t=21, Hdw=10 = L1 t=15, hdw=10 P t=6
L1, L ' 1are transit lines P walk link

• Type 2: in the same way as a transit line:
This method treats the walking link as a transit line with hdw= and  0

6.2 Concrete example
Lines 1 and 2 have a travel time of 10 minutes, and the length of the walking 
link is 0 
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Line 2
t=10min
hdw=30min

O min 10min

12min

20 min 32 min 40 min

m=10min
M'=23.2min

Line 1
t=12min 
hdw= 20min

23.2 min

Walking
t=20min
hdw=0min

M=20min

p= 20−10
30

=0.33

p= 20−12
20

=0.4

p=23.2−20 1
20


1
30

=0.27

T=0.4 . 1020
2

0.33 . 1220
2

0.27 . 2020
2

=16.68min



Figure 6: Optimal strategies without walk link

Line 1
hdw=30 min
t= 10 min

Line 2
hdw=12 min
t=10 min

Walk
type 1 link
t = 0 min

V=0.71

V=0.29

V=0.71

A BA X

T=14.29 min

Figure 8: Mint with walk link of type 1
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Line 1
hdw=30 min
t = 10 min
Line 2
hdw=12 min
t = 10 min

Walk
t = 0 min

V=1.00

V=0.00

V=1.00

A BA X

T=16.00 min

Figure 7: Optimal strategies with walk link

Ligne 1
Hdw=30 min

Ligne 2
Hdw=12 min

V=0.29

V=0.71

BA X
T=14.29 min



Line 1
hdw=30 min
t = 10 min

Line 2
hdw=12 min
t = 10 min

Walk
Type 2 link
t = 0 min

V=0.80

V=0.20

V=0.80

T=15.40 min

Figure 9: Mint with walk link of type 2

With walking links of type 1, we keep the same travel time and the same 
distribution of volumes as optimal strategies do, without the walking link. The 
results  of  assignment  are  then  independent  with  the  network  codification 
principles. 

However, the generalization of this approach for very long pedestrian links 
seems  problematic  :  it  is  based  on  the  assumption  that  the  user  is  very 
familiar with the timetables of all the lines, and it can access to the the various 
stops, by integrating the walking time walking in the lines timetables in the 
neighbourhood.

Mint can take into account the two types of pedestrian links. It seems 
appropriate to reserve the use of pedestrian links with type 1 links for short 
transfer links. 

7 ALGORITHM IMPLEMENTATION

7.1 Definitions

• l i , j , l  link between i and j, line l 

• t i , j , l travel time on link i , j , l

• T i , j ,l average travel time on link i , j ,l  

• m i , j ,l  minimum minimum time on link i , j , l

• M ' i , j , l minimum maximum time on link for non infinite lines i , j , l

• M i , j ,l minimum maximum time on link i , j , l including possible infinite 
frequency strategy

• hdw i , j , l headway of the line segment i , j , l , 0 if walk link

12/35



• V i , j ,l link volume i , j , l

• S i , j ,l  set of strategies si , j , l , k of link i , j , l

•  i , j , k ,l minimum time for the k strategy, link  i , j , l

•  i , j , k , l maximum time for the k strategy, link i , j , l

• n i , j , k ,l hourly frequency of k strategy, link i , j , l

• h i , j , k ,l headway of k strategy , link i , j , l

• p i , j ,k ,l  proportion of demand, assigned on k strategy, link i , j , l

•  i , j , k ,l previous link from k strategy, link i , j , l

•  set of non reached links

• P set of reached links

•  set of optimized links

• O trip origin

• D destination trip

• In() : set of predecessors

• Out() : set of successors

7.2 Principle
We start from the destination to determine attractive strategies

• Step 0 : Initialization
P= InD 

∀ l i , j ,l∈ P , we add a new k strategy, defined by :

• T i , j ,l = M i , j ,l = m i , j ,l =  i , j , k ,l =  i , j , k , l = t i , j , l

• « l » transit line identifier

7.3 Step 1: Main loop

• Step 1.1 :Calculation and link labeling

We take l i , j , l∈P with minimum T i , j ,l  as pivot
P=P−{l i , j ,l} et =∪{li , j ,l }

For each predecessor u in l i , j , l  :

• if u has not been reached yet u∉P

◦ if  u  and  l i , j , l belong  to  different  lines,  each  with  a  non  infinite 
frequency

▪ We build the average strategy s from the set of  strategies of 
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l i , j , l  

▪ Su= s

▪ s is defined by:
 s=T i , j , l tu
 s=T i , j , lt uhdw i , j , l
p s=1
 s=l i , j ,l

◦ else, the u set of strategies is the l i , j , l set of strategies where the 
travel time of u will be add to the minimum, average and maximum 
times.  The distribution of flow according to the strategies remains 
the same .

▪ Su=S i , j ,l  

▪  u, k =  i , j , k ,l + t u

▪   u , k =  i , j , k , l + t u

▪  mu = m i , j , k + t u

▪  M u = M i , j ,l + t u

▪  T u = T i , j ,l + t u

▪  M ' u = M ' i , j , l + t u

▪ ∀ k∈Su , k , pu= p i , j , k ,l

• if u has been reached ( u∈P ,⇒ S u≠∅ )

◦ If u and  l i , j , l belong to different transit lines, where both headway 
are not zero m i , j ,lt uM u , we can optimize

▪ We build the average strategy “s” from the l i , j , l set of strategies
 s=T i , j , l tu
 s=T i , j , lt uhdw i , j , l
p s=1
 s=l i , j ,l

▪ If s∈S u and as T i , j ,lt uT u , we update s strategy from u, which 
become optimized, else we add “s” to the u set of  strategies
S u=S u∪{s }

◦ Else if m i , j ,lt uM u then we can optimize

▪ ∀ s∈S u∩S i , j , l ,  if   s tuT u ,  then  we  can  update  s  strategy 
from u , which become optimized, else we keep existing values

▪ After, 
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∀ s∉S u et s∈S i , j , l , Su=Su∪{s }si  s tuT u et hdw s0 ou  st uM u si hdw s=0
we add to u set of strategies, the l i , j , l strategies which are not 
belonging to u and enable an optimization of u.

• Step 1.2: M and M' updates

We update  m, M and M' values from u from its own strategies

• mu=Min  k  , k ∈S u

• M ' u=Min  kh k ∀ k∈S u

•

M u=M ' u si∀ k∈S u , n k0
else
M u=Min  k ∀ k∈Su tel que n k=0

•

=
∑
s∈S u

n sM − s−60

∑
s∈S u

n s

• M '=M '−

• '=Min {M ,M ' }

• Step 1.3: Strategies weights update

• ∀ k∈S u

◦ If n k0 , 
p u ,k=

M − u, k
hdwy u ,k

◦ If n k=0 , 
p u ,k=M '−M ∑

k∈S u

1
hdw u ,k

=1−∑
k∈S

M −u , k
hdwyu, k

◦ If 
∑
k∈S u

nu , k=0
, pu ,k=1

• Step 1.4: Expected travel time update

•
T u=

1
2 ∑
k∈S u

p u, k  u ,kM  ∀ k∈S u
if 

∑
k∈S u

nu , k0

• T u=M si 
∑
k∈S u

nu , k=0

7.4 Step 2: Allocation of demand in proportion to the weight of the strategies
We start from origin,

• Step 2.1 Initialization
P=Out O
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• Step 2.2 Main loop
∀ u∈P ,∀ k∈Su , V u

=V u
V u . pu , k

if u exists, we add u to P , P=P∪{u}  and we drop u from P , P=P−{u }  

Repeat until P=∅
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8 APPLICATION ON A TEST NETWORK 
This  test  network,  taken  from the  Emme user  manual;  has  been  used  in 
particular by INRO to show the improvements of the transit assignment with 
variant module, recently implemented in Emme. This network is a good test 
case for comparing the Mint results with optimal strategies with and without 
variants. 

8.1 Optimal strategies result
The optimal strategy results in the use of a single alternative: 6min walk form 
O to E and then line 5.

V=1.0

V=0.0

V=0.0

V=0.0

V=0.0

V=0.0

V=0.0

T= 26.0 minutes

Figure 10: Distribution of flows with the method of optimal strategies. 
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8.2 Optimal strategies with variants
With the logit choice method, all options are used, except line 3 which would 
imply an alighting before the end of line 2.

V=0.542

V=0.229

V=0.229

V=0.229

V=0.000

V=0.038

V=0.191

Logit choice of strategies
 (scale =0.1)
T = 26.80 minutes V=0.229

Figure 11: Distribution of flows with the method of optimal  
strategies with variants

8.3 Mint results

V=0.571

V=0.229

V=0.175

V=0.286

V=0.111

V=0.117

V=0.169

Type  1 walk link OE
T = 24.46 minutes

V=0.143

Figure 12: Distribution of flows with the Mint method and a walk link of  
type 1
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V=0.690

V=0.229

V=0.139

V=0.227

V=0.088

V=0.092

V=0.135

Type  2 walk link OE
T = 25.67 minutes

V=0.083

Figure 13: Distribution of flows with the Mint method and a walk link  
of type 2

8.4 Mint results in generalized time
Walking weight : 2
Wait weight : 2
Boarding time :2
Boarding weight : 2

V=0.394

V=0.411

V=0.140

V=0.194

V=0.054

V=0.105

V=0.089

T= 25.15 minutes
C=34.84

Figure 14: Distribution of flows with the Mint method in generalized time and a  
walk link of type 2
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Unlike optimal strategies, even if the generalized time does not change the 
set of attractive lines, the distribution of flows is changed according to the 
different weights of the strategies.

8.5 Test on Winnipeg demo bank
This test was performed on the Emme demo bank on Winnipeg.
The network contains 154 zones, 900 nodes and 3000 links. The main interest 
is  to analyze the Mint behaviour on a real network and not just on trivial 
cases. The results below, seem consistent compared to those of Emme 

Figure 15: Winnipeg demo Mint transit assignment

9 TEST MINT ON THE PARIS URBAN AREA
The objective of the test is to evaluate the Mint behavior on large networks.
Paris network size :

• 1293 zones

• 17404 regular nodes

• 60358 links
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• 4577 transit lines

• 71279 transit segments
The assignment has performed well ans has taken 4h50 of computing.

Figure  16: Mint assignment on Paris area transit network (rail lines view)

10 IMPACT ON TIMETABLES
We take  the  example  2  below,  which  consists  of  two  lines  with  different 
frequency and different travel times. 

First, we suppose that both headways are regular. We obtain the distribution 
of time between A and B for each of the two lines depending on the departure 
time 
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Ligne 1

Ligne 2

t=20min, hdw=12min

t=15min, hdw=30min



Figure 17: Line 1 travel time distribution

Figure 18: Line 2 travel time distribution

As both lines are attractive, the user will have the choice to use either line 1 or 
line 2.
This is equivalent to using a line, combination of lines 1 and 2, defined by the 
combined frequency of both lines

The expected travel time depends on how both lines are listed in timetables 

22/35



10.1 Regular inter-vehicular interval on each line
Initially, we consider that the inter-vehicular intervals of both lines are regular 
and timetables are defined as follows: 
Line 1 : 0,12,24,36,48
Line 2: x,30+x where x is varying from 0 to 30

The impact of timetable on the expected travel time will be analyzed 
according to two strategies 

• The user boards into the first vehicle that comes to him (Optimal 
Strategies) 

• The user boards into the vehicle that minimizes travel time and waiting 
time (Mint). In this strategy, the user does not board into the first 
vehicle if another arriving after enable him to reach its destination 
sooner.

Figure 19: First vehicle boarding strategy
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Figure 20: Minimum maximum time strategy
The two diagrams show that  if  the inter-vehicular intervals are uniform for 
each line, the expected travel time, combining both lines is always higher than 
the one determined by either optimal strategies or Mint.
Results of the simulation are:

• First vehicle boarding strategy: Min:23.89 min Max : 24.91 min 
Mean:24.21 min

• Maximum minimum time strategy : Min : 23.69 min Max : 23.91 min 
Mean:23.79 min

As a reminder, the values found by both algorithms are: 
Optimal strategy travel time: 22.86 minutes
Mint travel time: 22.56 minutes

These results  show that  the  timetables  that  are implicitly  used by optimal 
strategies and Mint are not those taken earlier, and therefore that the inter-
vehicular intervals are not, for this example, uniform for each line.
Therefore, both methods are based on implicit timetables, results of an 
optimization 

10.2 Random offset
We still  suppose that timetables for each line are regular.  Over all  sets of 
timetables an arbitrary passenger will face impedance given by:
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T 1=2012.1
T 2=1530.2
i are random variables on the unit interval

We can make 10000 draws of the pair ( 1 ,2 ) and for each draw taking 
min(T1, T2) as the choice of line.

Figure 21: Result of the 10000 draws of 1 ,2 , first vehicle boarding 
strategy

Figure 22: Result of the 10000 draws of 1 ,2 , minimum maximum 
boarding strategy
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First vehicle boarding Minimum maximum time
Minimum: 23,89 23,69
Maximum: 24,90 23,90
Mean 24,20 23,78
Standard 
deviation: 

0,30 0,075

For  regular  timetables  and random offsets  for  both  lines,  travel  times are 
greater than optimal strategies of Mint travel times. Minimum maximum time 
strategy is always quicker and the expected travel time has very low variations 
depending of both line offsets

10.3 Completely random timetables
The objective is to study, with constant frequency and travel time for each, the 
impact on the structure of the timetables and the expected travel time. 

The method consists in analyzing the distribution of expected travel times, 
calculated for a large number of randomly generated timetables for each line.
The only  restriction  on timetables  is  to  require  for  each line  a  number  of 
passes equal to their hourly rate. 

For this, we perform Monte-Carlo simulations by generating 10,000 timetables 
for lines 1 and 2, and estimate the expected travel time 

Figure 23: Distribution of average travel time for random timetables on line 1  
and line 2 with first boarding strategy
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Figure 24: Distribution of average travel time for random timetables on line 1  
and line 2 with minimum maximum time strategy

Simulation results are:
First vehicle boarding Minimum maximum time

Minimum: 22,63 22,63
Maximum: 38,83 39,52
Mean 25,74 26,07
Standard 
deviation: 

1,91 2,09

These results show that the average expected travel time is greater than the 
overall  average  travel  time  determined  by  the  two  approaches  (optimal 
strategies  and  Mint).  In  addition,  we  find,  for  several  schedules,  that  the 
expected  travel  time  is  lower  than  the  one  determined  by  the  optimal 
strategies. 

The Mint expected travel time seems to be the optimum. We will see hereafter 
that 

− it is based on a timetable built from the concept of equalilty of the 
maximum time.

−  a schedule of equal maximum time is optimal, by showing that any 
other schedule has an expected travel times higher than Mint.

10.4 Optimal strategies implicit timetables
The method of optimal strategies is based on the fact that the inter-vehicle 
intervals from the combination of attractive lines is uniform. The timetable can 
be built by calculating the number of vehicle of both lines, and determining the 
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average interval, which will be assumed regular 

In our example, there are 5 vehicle arrivals per hour for line 1 and 2 for line 2
The combined frequency is 7 vehicles per hour regularly spaced by an interval 
of 60 / (5 +2) = 8.57 minutes 

MINUTES LINE TRAVEL_TIME
0.00 1 20
8.57 1 20
17.14 1 20
25.71 2 15
34.29 1 20
42.86 1 20
51.43 2 15

Table 1: Optimal strategies timetable

Figure 25: Optimal strategies implicit timetable 

10.5 Mint implicit timetables
Mint is based on an optimization of the concept of maximum time. The 
maximum time is defined as the sum of travel time and the interval between 
two consecutive vehicles. When travel times of both lines are identical, the 
implicit timetables of optimal strategies and Mint are identical; The expected 
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travel time of both methods is then identical and is optimal, if these only two 
lines are attractive.

If  travel  times  on  lines  1  and  2  are  different,  the  expected  travel  time 
determined by the method of optimal strategies is not minimum. The optimal 
expected travel time is given by Mint, which minimizes the maximum time.

We can show that the optimal solution is given by Mint, with a associate 
timetable based on the principle of equal maximum time 

Suppose we have a Mint timetable (diagram below). The expected travel time 
is given by the ratio of the area under the curve and the duration of the period 
(T = 60 minutes in our case), and for an inter-vehicular interval, we apply a 
positive or negative shift t
 t is the difference on the total expected travel time between the two 
timetables

T=
M. t

 t
2

2
−M−t.t

t
2

2


T

⇒  T=
t
2

T
 t is always positive, and therefore, whatever the changes applied to the 
Mint timetable, the expected travel time of Mint will always be inferior. 

MINUTES LINE TRAVEL 
TIME

0.00 1 20
7.14 1 20
14.29 1 20
26.43 2 15
33.57 1 20
40.71 1 20
52.86 2 15

Tableau 2: Mint timetable
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Figure 26: Mint implicit timetable

10.6 Timetable with walking strategy
With the example above, we can visualize the impact of a walking strategy on 
the timetable, which consists in adding a walking strategy of 25minutes.

Figure 27: Mint implicit timetable with walk only strategy
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11 TECHNICAL CONSIDERATIONS FOR THE OPERATIONAL 
IMPLEMENTATION OF MINT

11.1 The Mint tool
CETE Nord-Picardie has developed a software "Mint", which implements the 
eponymous algorithm. 

The tool developed in C # works with
• a transit network codified by frequencies
• a demand matrix
• assignment parameters: different weights for the generalized cost
• an algorithm for optimizing node labelling

Network and matrices files are text files with separator ";" 

The network is described by a list of line segments. A segment is defined by 
an initial node identifier, an end-node identifier, a transit line identifier. Walking 
links are considered as line segments with an infinite frequency (headway = 
0).
For each segment, we must complete the following fields:

• initial node identifier (text)

• end node identifier (text)

• transit line identifier (text)

• travel time (real)

• headway (real)

• vehicle total capacity (real)

• allow boarding on initial node (0 = no, 1 = yes)

• allow alighting on end node (0 = no, 1 = yes)

The demand matrix file is defined by a list of origin-destination associated with 
a corresponding volume:

• origin node identifier (text)
• destination node identifier (text)
• volume of demand on the origin destination (real)

Mint produces three output files:
• The results of assignment for each segment: volume, number of 
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boardings, number of alightings
• Travel times matrix: expected travel time , expected generalized  time; 

average transfer ratio
• An optional strategies file, which describes for each segment, all level 

one attractive strategies, with indications of percentage of volume per 
strategy, the maximum minimum time

11.2 Generalized time
The algorithm is described here, regardless of the various weights of different 
components of time, which changes slightly the formulas but not the principle. 

In the current prototype version of Mint, the following parameters are 
considered:

• walking weight:
• wait weight:
• boarding time:
• boarding weight: 

11.3 Consideration of walking strategies
The proportion of volume, for walking strategies are given by the following 
formulas. 

pu ,k=M−M ' 
∑
k∈S u

nu , k 

60 =1−∑
k∈S

M− u ,k
hdwyu , k

Walking links are equivalent to transit lines with infinite frequency. If we can 
not  apply  the  same  formulas  as  for  the  classic  lines,  it  is  possible  to 
demonstrate the above formulas by considering instead of the pedestrian link, 
a line with an inter-vehicular interval  which tends to 0. The proportion of the 
walking strategy is obtained by:

lim
0

pu , k =1−∑
k∈S

M−u , k
hdwyu , k

11.4 Independence of strategies
During the operational implementation of Mint,  it  is essential  to ensure the 
independence of strategies. For this, we must ensure, in combining strategies, 
not to add the same line twice, which would have the effect of reducing the 
maximum minimum in an artificial and wrong way.

11.5 Problem of cycles
For  a  correct  functioning  of  the  algorithm,  it  is  necessary  to  avoid  the 
possibility of cycles in the search of attractive strategies, which can artificially 
enhance the overall travel time incorrectly and prevent the convergence. To 
avoid such a malfunction, a line segment or pedestrian link can be added, 
only if it doesn't belong to set of segments and links constituting all existing 
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strategies. 

11.6 Computing optimization
In the operational implementation of Mint, several costs are involved in the 
optimization, making algorithms commonly used, such as Dijsktra not directly 
usable, because the time of the next segment may be lower than the pivot  
one, if it is located after the combination of several lines. 

The algorithm used in the Mint software is the "graph growth algorithm with 
buckets. The size of the intervals varies and depends on the square root of 
the travel time, to try to store a constant number of segment in each interval. 
The computing time is longer than the optimal strategies process, since the 
assignment procedure on a  Emme Winnipeg demo bank takes a few minutes 
versus a few seconds. However,  computation time of the current algorithm 
could be improved with a more efficient implementation. 

11.7 Consideration of capacity constraints

In Mint, the flow distribution is a continuous function of frequency and travel  
time. This property may enhance the convergence of an iterative algorithm 
taking into account capacity constraints. 

It is also possible that this algorithm can allow the implementation of a more 
efficient  convergence  process  than  the  method  of  successive  average 
currently  used  in  the  macro  captras  implemented  in  Emme.  Similarly,  the 
properties of Mint can bear other procedures to take into account  capacity 
constraints.  For example specific boarding time delays can be used instead 
of effective headways, essential with optimal strategies.

12 CONCLUSION
In conclusion, the methods of optimal strategies and Mint are based on strong 
assumptions and comparable information on the structure of their associated 
timetables. The only difference between the two methods is how to build these 
implicit timetables.

Mint overcomes most of the limitations of optimal strategies and provide the 
optimal expected travel for a set of attractive lines.

For  optimal  strategies,  the  inter-vehicular  interval  is  supposed  constant, 
whereas the method Mint, this is the maximum time 

The  Mint  algorithm  determines  expected  travel  time  for  a  given  set  of 
attractive lines, and has the advantage of providing a distribution of flows on 
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lines that depend on the respective travel time.

The current version of Mint was tested on the two networks of different sizes,  
respectively  Winnipeg  and  Paris.  The  results  are  encouraging  and  the 
algorithm seems to perform well.
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