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Chapter 1

Plug-in overview

1.1 Introduction

Open source software platforms are progressively becoming widely used in the
public and private sectors. In Geographical Information System (GIS), open
source software packages such as QGIS are actively being developed. More
importantly, customization and further development is possible since developers
create specific plug-ins with flexibility.

Asia Air Survey Co., Ltd. (AAS) started to move towards open source soft-
ware since 2012 becoming the first QGIS gold sponsor worldwide. Furthermore,
open source software started to be used more extensively for internal use and
in international project. Alongside with these recent changes AAS also started
to develop open source solutions aiming to further extend its market.

1.2 What is MOLUSCE?

AAS released MOLUSCE (Modules for Land Use Change Evaluation) at FOSS4G

2013. MOLUSCE is a user-friendly plug-in for QGIS 2.0 and above. MOLUSE

is designed to analyze, model and simulate land use/cover changes. The plug-in

incorporates well-known algorithms, which can be used in land use/cover change

analysis, urban analysis as well as forestry applications and projects.
MOLUSCE is well suited to:

e analyze land use and forest cover changes between different time periods;
e model land use/cover transition potential or areas at risk of deforestation;

e and simulate future land use and forest cover changes



1.3 Functions

MOLUSCE user interface offers an easy-to-use interface with specific modules
and functions. Following is a brief description of basic modules in MOLUSCE.

Input module Land use/cover maps from different epochs, biophysical and
socio-economic driving factor data such as road network, rivers, topography,
population etc., are loaded in the input module.

Area change analysis Computes land use/cover changes between two time
periods (T1 and T2). Land use/cover change transition matrices as well as land
use change maps are produced.

Modeling methods Four methods, namely Artificial Neural Networks (ANN),
Logistic Regression (LR), Multi-Criteria Evaluation (MCE) and Weights of Ev-
idence (WoE) are used for modeling land use/cover change transition potential.

Simulation Displays transition potential maps, certainty function (experi-
mental) and simulation results. A simulated (projected) land use/cover map is
produced based on a Monte Carlo Cellular-automata modeling approach.

Validation This sub-module incorporates Kappa statistics (standard Kappa,
Kappa histogram and Kappa location), which will be used to validate the ac-
curacy of the simulated land use/cover maps.



Chapter 2

How to use MOLUSCE

2.1 Inputs

A screenshot of Inputs tab is shown in Figure 2.1.

Inputs | Evaluating correlation ~Area Changes Transition Potential Modelling  Cellular Automata Simulation | Validation Messages

dist_main_roads1 ‘anlt.ia(» Pak_lucco3 1993 @
dist_rivers1

LPB_dem_res1 (1) © rinal >> Pak_luccoo 2000 @
Pak_luccoo

Pak_lucco? ~ o

Pak_lucca3 Geometry is matched

“ Geometries of the rasters are matched!

Spatial variables @

dist_main_roads1
dist_rivers1
LPB_dem_res1

0O Add>>
<< Remove

<< Remove all

© Check geometry

Figure 2.1: Inputs tab

Data can be loaded using the inputs tab. To load your data follow the next
steps (Figure 2.1).

e Step 1. Load all rasters that you need in the input tab.

e Load the initial and final land use/cover maps as shown in steps 2 and 3.

The base map determines the geometry of all the output files, pixel size,
scaling and projection.

e Steps 4 and 5 show the corresponding years. (The user can type here If
the corresponding years do not appear automatically).



e Steps 6 and 7 show how the add/remove buttons used to add or remove
spatial variables.

e The selected spatial variables are shown in step 8.

e The check geometry button is a mandatory step to check if the geometry
of the selected raster is matched (step 9).

Note: It is important when layers are added to QGIS that the No Data Value
(NDV) is set. If this is not done, MOLUSCE will process NDV areas as land
use/cover classes, increasing processing time and confusing the model calibra-
tion. MOLUSCE picks up the NDV of the input (base) layer and propagates it
to any output maps generated, along with the geometry of the base layer.

2.2 Evaluating correlation

The evaluating correlation module contains three techniques for performing
correlation analysis:

1. Pearson’s correlation.
2. Cramer’s coefficient.
3. Joint information uncertainty.

The user can choose between a two-way raster comparison by selecting
first raster and second raster or check all rasters loaded into MO-

LUSCE.

Inputs | Evaluating correlation | Area Changes Transition Potential Modelling | Cellular Automata Simulation | Validation =Messages

First Raster
Second Raster
@ checkall rasters

method |

Cramer's Coefficient

Joint Information Uncertainty
i rest wanu 1y - [T V.ruszooo rows UU3£010V00LTL UUU333003322UT0

LPB_dem_res1 (band 2) - 0.998002717565 0.127493185309 -0.0270502073541
LPB_dem_res1 (band 3) - 0.13348738026  -0.0287952616254
dist_rivers1 - 0.0282065984942

dist_main_roads1
Result

Check

Figure 2.2: Evaluation correlation tab

The user can run correlation by pressing the check button located at the
bottom of the window (see Figure 2.2).



Note: The Cramer’s coefficient and joint information uncertainty

work only with categorical data. The data should be converted to categorical
data (eg. using GRASS).

2.3 Area Changes

A screenshot of Area Changes tab is shown in Figure 2.3.

] MOLUSCE
Inputs | Evaluating correlation | Area Changes  Transition Potential Modelling = Cellular Automata Simulation  Validation Messages

Class statistics

sq.km.

Class color 1993 2000 A 1993 % 2000 % A%
Current Forest -997 07 sq. km. 819.95 5. km. -177.12 5q. km. 60.9670932721 50.1366986291 -10.830394643
Unstocked Forest 553.13 sq. km. 757.53 sq. km. 204.40 sq. km. 33.8220144227 46.3200332831 12.4980188604
Non-forest - 85.22sq.km. | 57.95sq.km. -27.27sq.km. 5.21089230525 3.5432680878 -1.66762421745

Transition matrix

Current Forest Unstocked Forest Non-forest

Current Forest 0.810983 0.164353 0.024664

Unstocked Forest  0.009694 0956156 0034149

Non-forest 0070145 0760099 0169756
Update tables

Create changes map

Figure 2.3: Area Changes tab

The update tables button produces class statistics and transition
matrix tables.

The class statistics table shows the initial and final land use/cover
change (LUC) areas.

The transition matrix shows the proportions of pixels changing from one
land use/cover to another.

The create change map button will generate a map of change classes. This
will be added automatically to QGIS and saved as a GeoTiff.

Note: Data from tables can be copied and pasted directly into spreadsheet

programs, simply by selecting the desired rows/columns and by pressing the
“Ctrl + C” keyboard combination.

2.4 Transition potential modeling

MOLUSCE uses Artificial Neural Network (ANN), Multi Criteria Evaluation
(MCE), Weights of Evidence (WoE) and Logistic Regression (LR) methods to

model land use/cover transition potential. The user can select a method from
the drop down menu.



ANN, WoE and LR are machine learning models; they ”look” at the training
samples and try to find patterns that are "hidden” in the samples. However
MCE is different: it is a model in which an expert (the user) describes the
importance of factors according to his/her knowledge of the domain area. After
that, the expert’s knowledge is transformed into a computational model that
estimates transition potentials.

The models are trained using samples, so the sampling process is important
for the results, see Section 3.3.3 for the reference about sample modes.

2.4.1 Artificial Neural Network (ANN)

MOLUSCE uses full-connected Multi-Layer Perceprtron for modeling. A screen-
shot of an example of ANN model settings is shown in Figure 2.4.

o MOLUSCE

Inputs Evaluating correlation ~Area Changes | Transition Potential Modelling | cellular Automata Simulation Validation Messages

w Define Samples

Mode Random + | Number of samples 2000 - Save Samples... & Add to canvas
Method | Artificial Neural Network (Multi-layer Perceptron)
Neighbourhood 1px - Neural Network leaming curve
Learning rate 0.001 B
; o
Maximum iterations 100 : ——  \akdation
016
Hidden Layers 12
014
Momentum 0.001
042
A Overall Accuracy -0.00353 010 \/\/\v,‘m\_/
A ANACAA AR AA e
Min Validation Overall Error 0.08819
008 H
Current Validation Kappa 0.81642 6
Train neural network
E a0 C3 EY 100

Figure 2.4: Transition potential modeling: ANN model

The define samples function specify number of samples and sampling
mode. In addition, the sampling points created can be saved and displayed.

Inputs Five inputs are used to customize the ANN modeling;:

e The neighbourhood defines count of neighbour pixels around current
pixel. Size=1 means 9 pixels (3x3 region), size=2 means 25 pixels (5x5),
ete.

e Learning rate, momentum and max iterations number define parame-
ters of learning. Big learning rate and momentum allow fast learning, but
the learning process can be unstable (spikes on the graph). Small learning
rate and momentum means stable but slow learning.



e Hidden layers input string takes a list of numbers: Ny, Ny, ..., N,
where Np is number of neurons in 1st hidden layer, Ny is number of
neurons in 2nd hidden layer and so on, Nj is the number of neurons
of the last hidden layer (k-th layer). For example if the user types in the
input string “2” then a network with 1 hidden layer and 2 neurons will
be created. In order to create a network with 2 hidden layers the user
should insert 2 numbers, such as “10 2” which will create a network with
10 neurons in the first hidden layer and 2 neurons in the second.

Outputs The following outputs are proposed (for the current learning itera-
tion):

e The graph area. Contains errors of training and validation sets. It is the
main information about learning process. The graph can be edited and
saved as image.

e The min validation overall error contains information about min
reached error on validation set of samples.

e The delta overall accuracy contains difference between min reached
error and current error.

e The current validation Kappa shows the Kappa value.

The training process can be started by pressing on the train neural network
button and stopped at any time using the stop button.

Learning algorithm analyses the reached accuracy on training and validation
sets of samples and stores the best neural net in memory. The training process
finishes when the maximum iteration number is reached, and the best neural
net will be used to produce transition potentials.

How to train the model

There are few parameters that can dramatically change quality of trained model.
The main of them are:

e ANN complexity (number of layers and neurons): complex models are
more powerful, but training them properly is hard process, complex mod-
els require more samples to train etc.

e learning rate and momentum: large values of learning rate allow to train
quickly, but the training process may be unstable in this case; momentum
helps stabilize the training.

e sample count: large sample count allows to train complex models, but the
training becomes slow and requires more computer memory (which can
be issue for large rasters).



So process of ANN training is a trial and error method: during the training
the uses searches ”good” parameters that lead to "good” model. The training
graph is the main tool that provide information about the training process and
model quality.

Bellow we provide an example of ANN training, discuss some potential
caveats and how to fix them.

Unstable learning Figure 2.5 shows an example of unstable learning process:
there are a lot of spikes on the graph. Note that the learning rate is 0.1.

A stable training process is one of the necessary conditions for good ANN
model: we can’t expect to learn something useful if the values of its parameters
show dramatic changes with every iteration.
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Figure 2.5: ANN model: spikes on the graph (unstable training)

We can fix the issue if decrease the value of this parameter. Figure 2.6 shows

that if we set learning rate to 0.001 the learning curves become smooth. The
smooth form of lines for training and validation errors indicates a stable training
process. This means that the internal values of the parameters of ANN model
do not change suddenly with every iteration.

But we can see that the model isn’t perfect (look at the Kappa and validation
error).



Bxoarwe aaHue | Evalusting correlation | Area Changes | Transition Potential Modeling | Cellular Automata Simulation | validation | Messages |

w Define Samples

Mods | Random q: Number of samples 1000 | saveSamples... ) ® Addto carvas
Method | Artficial Neural Network (Multi-layer Perceptron) 2]
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Learning rate 0,001
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Figure 2.6: ANN model: smooth learning curves

Improving the quality Validation error and Kappa show than the model is
not perfect (see Figure 2.6).

We can add a neuron for the hidden layer, it makes the net more complex.
The learning curves are shown in Figure 2.7. We can see that Kappa is not zero
and validation error decreases. It means that the model is getting better.

What about the over-fitting? The model shows some over-fitting (there is
some difference between validation and training errors) but it is not significant.

To get an example of clearer over-fitting, set 12 neurons in the hidden layer.
The result presented in Figure 2.8.

We can see that the training error is decreasing but the validation error is
still nearly constant. It is clear signal about over-fitting. To avoid it we have
two choices:

e decrease number of neurons;
e increase sample count.

Figure 2.9 shows training on 20,000 samples.
We can see that the training and validation errors are close. Over-fitting is
not present.
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Figure 2.7: ANN model: better model with slight over-fitting
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Figure 2.8: ANN model: over-fitting example
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Figure 2.9: ANN model: final example

Table 2.1: Saaty’s scale
Rating  Preference
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2

,4,6,8 Intermediate values

2.4.2 Multi Criteria Evaluation (MCE)

The MCE model [2] takes into account the expert point of view regarding the im-
portance of the predictors. The user makes pairwise comparisons of the factors
and describes their importance for the transition potentials. The comparisons

are made using Saaty’s scale (see Table 2.1).

For example, coefficient ”1” between factors A and B means that the factors
have equal importance for the transition process. Coefficient ”9” between factors

A and B means that factor A absolutely exceeds factor B in importance.

A screenshot of an example of MCE model settings is shown in Figure 2.10.

The user can set the values inside the pairwise comparison matrix.

The user can also select which classes to use to train the model by changing

the from class and to class values located at the bottom of the window.
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(] MOLUSCE

Inputs | Evaluating correlation | Area Changes | Transition Potential Modelling | Cellular Automata Simulation | Validation = Messages
Method | Multi Criteria Evaluation

Pairwise Comparison Matrix
LPB_dem_res1 (band 1) LPB_dem_res1 (band2) LPB_dem_res1(band3) dist_rivers1 dist_main_roads1

LPB_dem _res1 (band 1) 1 1 1 3 6
LPB_dem_res1 (band 2) 1.0 1 1 3 6
LPB_dem_res1 (band 3) 1.0 1.0 1 3 6
dist_rivers1 0.333333333333 0.333333333333 0.333333333333 1 1

Weights Matrix
LPB_dem_res1(band 1) LPB_dem_res1(band 2) LPB_dem_res1 (band 3) dist_rivers1 dist_main_roads1
Weights 0. 22 0. 22 0. 22 0.0844109410934 0.0560930593392

From class 1
To class 3

Train model

Figure 2.10: Transition potential modeling: MCE model

The model can be started by pressing the train model button.
The weights of the spatial variable will then appear in the weights matrix.

2.4.3 Weights of Evidence (WoE)

The WoE [1] method proposes two ways of defining the range breaks. The user
can define a number of intervals or specify the range breaks values.
When the calculate range breaks button is pressed the weights informa-
tion for each transition are produced.
Once the user is satisfied with the weights the train model button can then
be pressed.

An example of WoE model settings is shown in Figure 2.11.

2.4.4 Logistic Regression (LR)
An example of LR model settings is shown in Figure 2.12.

The LR method offers the possibility to define samples (number of samples
and sampling mode) as well as save and display the sampling points created.
Inputs Two inputs are used to customize the LR modeling:

e The maximum iteration defines the total number of iterations.

e The neighbourhood defines count of neighbour pixels around current
pixel. Size=1 means 9 pixels (3x3 region), size=2 means 25 pixels (5x5),
etc.

13



MOLUSCE

Inputs | Evaluating correlation ~Area Changes | Transition Potential Modelling | Cellular Automata Simulation = Validation Messages
Method | Weights of Evidence =

Enter either Number of intervals (min 2) or Range breaks:

Factor Range min Range max  Number of intervals Range breaks
1 LPB_dem_res1 (band 1) 39.000000  251.000000 2 145
2 LPB_dem_res1 (band 2) 22.000000  223.000000 2 122
3 LPB_dem_res1 (band 3) 11.000000  213.000000 2 12
4 dist rivers1 90.000000 | 15783.000000 2 7936 5

Calculate Range breaks
Weights Information:

Transition 1->1

factor: LPB_dem_res1.tif
Weights of band 1:-0.295450, 0.132432
Weights of band 1152663, 0.319461
Weights of band 1171181, 0.256561

factor: dist_rivers1.tif
Weights of band 1:-0.177492, 0.666541

factor: dist_main_roads1.tif
Weiahts of band 1: 0.055175. -0.066406 o

Train model

Figure 2.11: Transition potential modeling: WOE model

MOLUSCE

Inputs = Evaluating correlation Area Changes = Transition Potential Modelling = Cellular Automata Simulation Validation Messages

w Define Samples
Mode Random 2 | Number of samples 2000 . Save Samples... Add to canvas

Method | Logistic Regression

Maximum iterations 100 - | Coefficients | standard deviations = P-values

Phghisowri oo 1px . 10-10 1020 10530 20

Pseudo R-squared (count) [0.86500 BO 229089184273 235420848312  1.3914636075 0.57130‘ ‘

[ e || B1 0538482506386 198357256737 |134364598914 078324
B2 -0.307389693649 0577564941391 0.464627578576 138264
B3 0266529173098 -0.91618718305 -1.054462362  -1.27351

B4 1.50168353366 0.158805483881 0.267868188705 0.77775
-0.0134878663421 1.41666429025 0.402012977562 0.98903
-0.541370873113  1.23294235435 0.252883802189 0.99133
B7 -0.262839147104 -0.469156181501 -0.447478818499 0.75258
B8 0.702193563934 0.233648007781 1.01319158149 -0.56001
B9 -11.6339521169 -9.01149414668 -6.56192430643 2.25965
R10 748971070182 §Q2A2N225408 2 A727RAARTSA -2 RA4AE |~

»|»
g

Figure 2.12: Transition potential modeling: LR model

Outputs The following outputs are proposed (for the current learning itera-
tion):

e The pseudo R-squared shows the goodness-of-fit.
e The coefficients tab.
e The standard deviations tab.

e The p-values tab.
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The user can run the model by pressing on the £it model button.
Note: For additional information on the LR outputs please consult the
“Technical information: Methods and Algorithms” manual.

2.5 Cellular Automata Simulation

Once one method has been chosen and trained from the transition potential
modeling tab, the user can then access to the cellular automata simulation
tab.

Be aware that MOLUSCE will keep in memory the latest method processed,
if for example the user runs first the ANN and then the LR methods, the cellular
automata simulation tab will retain the results from the LR.

> MOLUSCE

Inputs  Evaluating correlation Area Changes Transition Potential Modelling | Cellular Automata Simulation| validation Messages

Prefix of transition potential maps
& Certanty function /home/matteo/Desktop/Original/Output/ANN certainty Function.tif Browse...
& simulation result /home/matteo/Desktop/Original/Output/ANN simulation result.tif Browse...

Number of simulation iterations 1

Figure 2.13: Simulation tab

Three type of output maps are produced. A check box at the beginning of
each output is provided to allow the user to enable only what it is necessary. A
browse. .. button located at the end of each output allows to save each map.

e Theprefix of transition potential maps button allows to select pre-
fix of the names of transition potential maps. Transition potential map
shows the probability or potential to change from one land use/cover class
to another. Transition potential values range from 0 (low transition po-
tential of change) 100 (high transition potential). Transition potential
maps will be produced from the corresponding land use/cover changes
(e.g., “forest to unstocked forest” transition potential, “forest to non-forest
transition potential).

e The certainty function.

e The simulation result produces a simulated land use/cover map.

15



An example of simulation tab is shown in Figure 2.13.

2.6 Validation

The validation tab allows the user to check, validate and compare the simula-
tion results. Reference and simulated land use/cover maps must be loaded
in order to start the validation process. The former indicates a land use/cover
map (75). Ty refers to the initial land use/cover, while T5 refers to the final
land use/cover used in the model). A browse button located at the end of each
output allows to load the desired map. A two way map comparison is performed
from reference land use/cover (T3) and simulated land use/cover maps.

In order to perform a three way map comparison, the user can check the
risk class validation map check-box. Although it is not shown explicitly,
the three-way map comparison uses the initial land use/cover map (77), the
reference land use/cover map (73) and the simulated land use/cover map.

The multiple-resolution budget method [3, Chapter 17] is also used in
MOLUSCE. The user can decide the number of validation iterations and
can start the process by pressing the start validation button. The graph
can be edited and saved as image.

The overall accuracy (% of correctness,Kappa (overall),Kappa (histo)
and Kappa (loc)) can be executed by clicking the calculate Kappa button.

Inputs  Evaluating correlation ~Area Changes Transition Potential Modelling  Cellular Automata Simulation | Validation | Messages

Reference Map /home/matteo/Desktop/Original/Pak_lucco7.tif Browse... % of Correctness |76.36253

simulated Map 20/Desktop/Original/Output/ANN simulation result.tif| | Browse. Kappa (overal)  |0.55180

& Risk Class validation Map @ check persistent classes | Create... Kappa (histo) 0.85414
Number of validation iterations 5 - Kappa (loc) 0.64604

start validation Calculate kappa

Multiple-resolution budget
10
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Figure 2.14: Validation tab

An example of validation tab is shown in Figure 2.14. We discuss here some
parts of the graph, see full details in [3, Chapter 17]. The chapter propose 15
types of statistic, but MOLUSCE calculates and plots 5 of the most important
of them:

e No location information, no quantity information;
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e No location information, medium quantity information;

e Medium location information, medium quantity information;
e Perfect location information, medium quantity information;
e Perfect location information, perfect quantity information.

These lines agreement metrics. They are measured for maps at different
scales. The zero point on the abscissa axis corresponds to the original scale of
the maps, the point one corresponds the maps scaled down by half (21), the
point two corresponds the maps scaled down by quarter (22), etc.

Medium location information, medium quantity information is ”the main”
line. It represents sequence of measures of agreement between the reference map
and the simulated map. Higher values of the line show higher agreement.

Other lines show measures of agreement between the reference map and
those that describe different hypothetical situations. For example the line ”No
location information, no quantity information” is the agreement due to chance.
Usually it lies below the ” Medium-Medium” line, in this case the simulated map
has better agreement with the reference then random generated map.

The upper line, ” Perfect-Perfect,” represents the highest possible agreement.
It corresponds to the case when we have complete information about the refer-
ence map in advance and can place all changes in their correct locations during
the simulation. Thus, this line shows the case when no errors are committed.
Usually the "Medium-Medium” line lies below this line.

Other lines represents other hypothetical situations when we know more
or less information about the reference map. This information consists of two
parts: information about the quantity of pixels (quantity of changes in our case)
and information about the locations of changes.
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Chapter 3

Technical details

This chapter describes some algorithm and math details used for QGIS MO-
LUSCE plugin. In this chapter we use the next terminology:

A model is an algorithm that is used for predicting land use changes (transi-
tions).

A state raster is a one-band raster where each pixel is assigned a land use
category.

The input state raster is a one-band raster describing the past.

The output state raster is a one-band raster describing the present. It is the
desired result of the prediction for the model (a user trains the model to
predict (input raster, factors) -j, output raster).

A factor raster is a raster of explanatory variables. The rasters can be one-
band or multi-band.

A transition class, or simply transition,’ is information about land use change.
Every change (for example, forest — non-forest) can be viewed as a tran-
sition of land use categories (encoded as pixels) from the input state raster
to the output state raster.

A change map is an integer one-band raster that stores information about
transitions. The category values of the change map are mapped one-to-
one to transition classes.

The user declares the input and output state rasters, as well as the factor
rasters, via the GUI.

3.1 Data types

The next assumptions are currently used by the plugin:
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Table 3.1: Change map encoding schema

Category 1 Category 2 ... Category N
Category 1 0 1 N-1
Category 2 N N+1 e 2N-1
Category N (N-1)*N (N-D)*N+1 ... N*N -1

Table 3.2: Change map encoding example
Agriculture (1) Forest (2) Urban (3) Water (4)

Agriculture (1) 0 1 2 3
Forest (2) 4 5 6 7
Urban (3) 8 9 10 11
Water (4) 12 13 14 15

e Initial and final state rasters are categorical one-band rasters; therefore a
change map is categorical one-band raster too (see Section 3.2).

e For the ANN, MCE, and LR models, factor rasters are assumed to be or-
dinal or continuous (one-band or multi-band), but not categorical. These
assumptions are very important because categorical data requires dummy
encoding (see Section 3.3.1), while ordinal and continuous data need nor-
malization (see Section 3.3.2).

3.2 Change map and area analysis

The output of the Area Analysis stage is a change map; it is a raster where each
pixel is assigned an integer value indicating its transition. The module uses the
following scheme for transition encoding (see Table 3.1).

For example, for 4 classes (N=4), there are 4*4=16 possible transitions (see
Table 3.2). For example, if in the state rasters category ”Forest” coded as
727, category ”Urban” coded as ”3”, then transition ”Forest” - ”Urban” in the
change map will be coded as ”6”.

One row (in this case it is Water) consists of zeros. It is important be-
cause otherwise the dummy variables became linear-dependent. The condition
of linear independence of data is crucial for Logistic regression and strongly
recommended for Multilayer Percepton.

3.3 Sampling of points and data transformation

Before the modeling stage some internal data transformations are made. The
transformations are not visible to the user, but understanding of them can help
improve the quality of modeling results.

The transformations are made during data sampling stage.

19



Table 3.3: Dummy coding example
Dummy (1) Dummy (2) Dummy (3)

Agriculture 0 0 1
Forest 0 1 0
Urban 1 0 0
Water 0 0 0

3.3.1 Dummy coding

As the initial state raster and change map are categorical, each of them must
be transformed to set of independent variables.

To do that the plugin uses dummy coding — a categorical variable of N levels
is divided into N-1 dummy variables. For example, if our land use map has 4
classes (Agriculture, Forest, Urban, Water), we have to use 3 dummy variables
(see Table 3.3).

One row (in this case it is Water) consists of zeros. This is important be-
cause otherwise the dummy variables became linear-dependent. The condition
of linear independence of data is crucial for Logistic regression and strongly
recommended for Multilayer Percepton.

3.3.2 Normalization

The next stage of initialization/sampling procedure is normalization of factor
data. Usually normalization allows to achieve more efficient training and more
accurate prediction result. The plugin uses linear normalization:

X —my

Og

Xno’r’m =

Here X is our variable, X, o, is the normalized variable, m, is mean of X
and o, is standard deviation of X.
Note that MCE method uses slightly different normalization (see Section 3.4.4).

3.3.3 Sampling process

Sampling procedure processes single pixels and a neighborhood of pixels. This
means that a user can take into account a set of pixels around current pixel.
The implementation of the algorithm uses Moore neighborhood.

For example (see Figure 3.1), if the user sets up 1l-size neighborhood then
sampling procedure reads the current pixel and all pixels located in immediate
vicinity (3x3 window size). If the user set up 2-size neighborhood then sampling
procedure reads the current pixel and all pixels located in 5x5 window size and
so on. Every neighborhood is stored as vector (9 elements, 25 elements and
so on). Sampling is performed for every input raster (initial state raster and
factors).

Thus a sample contains:
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Figure 3.1: Example of three neighbourhoods: 0-size (a pixel), 1-size and 2-size.

e coordinates of the pixel (the coordinates doesn’t used during training pro-
cesses, they are used in some internal parts of the plugin),

e input data; that is used as input for models (for training and inference
stages), the data consists of 2 parts:

— state pixel vector is the neighborhood that is read from 1-band raster,
this raster contains initial states (categories). The raster is divided
into set of dummy variables before sampling (see Section 3.3.1).

— factor pixel vectors are the neighborhoods extracted from factor rasters
(they can be multiband); every raster band is normalized before sam-
pling (see Section 3.3.2).

e output data is read from 1-band raster, this raster contains final states or
the change map.
Sampling modes

The plugin has three sampling modes:

All. This mode extracts information for all pixels of the input and output
rasters Among other methods this mode of sampling needs the biggest
amount of RAM and CPU time

Random. This mode extracts information for randomly selected samples: if
raster has N pixels, then the every pixel has equal (%) probability of
being selected during sampling
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Stratified. This mode randomly undersamples major categories (large areas)
and/or oversamples minor categories (small areas) If C' is desired count of
samples and K is number of output categories, then the sampling proce-
dure select K random groups of pixels of equal size % Every group will
contain pixels of one certain category

3.4 Some words about modeling

A user has a number of factors, init state raster and final state raster. The
goal of modeling stage is to create a model that can predict land use changes
between those states. Before discussing prediction methods we need to explain
common preparation stage.

3.4.1 ANN: Multilayer perceptron

The plugin uses classic realization of Multilayer perceptron. The input data is
a collection of pixels of initial state raster and factor rasters. The target output
data is the change map.

So, the perceptron model performs the next actions:

1. Initial preprocessing of the data (dummy coding and normalization).
2. Sampling.
3. Training.

The initial stages are described (in general) in the previous sections (see Sec-
tions 3.3.1 and 3.3.2), this subsection discussed the structure of the neural net,
the training procedure and particular features of initialization.

MOLUSCE uses multilayer percepron with numpy.tanh sigmoid function.
Therefore target variables (the change map categories) should be scaled to
(=1,1) interval during dummy coding instead of classic (0,1). This process
is performed automatically during the preparation.

The user can set arbitrary number of hidden layers (one or more) and ar-
bitrary number (one or more) of neurons in the layers. Finally the created net
has:

e (C—1)(2N + 1) + B(2N + 1)? input neurons;
e about M output neurons (it depends on sampling mode, see below);

here C' is the count of land use categories, N is the neighborhood size specified
by the user, B is the summary band count of factor rasters (for example if two
factors are one-band and three-band, then B = 4). M usually is a count of
unique categories in the change map (C?). But the count of output neurons can
be less then M, it depends on the sampling mode. If mode ”Random” is used,
some small classes could be omitted during sampling procedure.

22



The module uses classic backpropagation algorithm with momentum for the
learning procedure. Weights correction are performed as:

w(n+1) =r*dw(n) +m* dw(n — 1),

where w is a vector of neuron weights, dw is a vector of weights changes, n is
an iteration number, 7 is learning rate, m is the momentum value.

Training set is divided in two parts: learning set (80% of samples by default)
and validation set (20% of samples).

The module uses on-line learning with stochastic: a random sample is se-
lected from the learning set, the weights of the net are updated during for-
ward /backward propagation.

A error of fitting (for a sample) is the average square error of partial outputs
of the net:

ti — 0;
/

where F is a sample error, t; is the target value of a output neuron for
given sample, o; is the real output value of the neuron, d is the count of output
neurons.

E= d

3.4.2 Logistic regression

Logistic regression model behavior is very similar to the ANN. The input data is
a collection of pixels of initial state raster and factor rasters. The target output
data is the change map.

So, the logistic regression model also performs the next actions:

1. Initial preprocessing of the data (dummy coding and normalization).
2. Sampling.
3. Training.

The created model has M (((C'—1)(2N +1)2 4+ B(2N +1)? + 1) coefficients,
but only (M —1)((C' —1)(2N + 1)2 + B(2N + 1)?) are independent. As before
(see Section 3.4.1), C is the count of land use categories, N is neighborhood size
specified by the user, B is summary band count of factor rasters (for example if
two factors are user one-band and three-band, then B = 4). M usually is count
of unique categories in the change map C?). M depends on the sampling mode
also (see Section 3.4.1).

Examples

Example 1. For example we discuss coefficients of one transition class (tran-
sition from land use category 2 to land use category 3, for example). If we have
four land use categories 1,2,3.4 and we select one one-band factor and we use
0-neighborhood, we have 5 coefficients per transition class:
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e by is the intercept;

e by,bo,b3 are the coefficients of dummy variables of current landuse state
(categories of the raster are coded as: 1 = (0, 0, 1); 2 = (0, 1, 0); 3 = (1,
0, 0); 4 = (0, 0, 0), see Section 3.3.1); by is the coefficient of factor pixel
(0-neighborhood).

Example 2. If we select two one-band factors, we have 6 coefficients per
transition class:

bo is the intercept;

b1, ba, bg are the coefficients of dummy variables of current landuse state;

by is the coefficient of the first factor (0-neighborhood).

bs is the coefficient of the second factor (0-neighborhood).

Example 3. if we use 1-neighborhood and two one-band factors, we have 37
coeflicients per transition class:

e by is the intercept;

e coefficients from b; thru by; are the coefficients of dummy variables of
current landuse state: ( by, ..., bs are dummy variables for the upper-left
corner of 3x3 neighborhood window);

e coefficients from bog thru bzg are the coefficients of the first raster pixels
(1-neighborhood uses 9 pixels or 3x3 window);

e coefficients from b37 thru bys are the coefficients of the second raster pixels.

3.4.3 Weight of evidence

Initially Weight of Evidence method was developed to process binary variables,
but the method was later modified in order to enable it to handle multiple
categories of variables. If the user uses rasters with continuous values, he/she
has to transform them into categorical variables.

MOLUSCE implementation uses the next one modification. To handle con-
tinuous factors user must split raster values into several categories (range bin-
ning). The GUIT has a form that allows to perform transformation into categori-
cal variables. A compromise is needed here: if the user set up too many binning
values, then a small amount of pixels might fall into a category and accuracy
of statistical calculations will be poor; on contrary if the user set up few bins,
which will lead to few of weights are formed, that leads to poor accuracy again.

In the binning form GUI doesn’t display all of the used rasters: if a raster is
already categorical, it doesn’t need transformation and it doesn’t appear in the
form. Currently a simple procedure is used to decide if rasters as categorical: if a
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raster has more then MAX_CAT (=100) unique values, then the raster is supposed
to be continuous, otherwise the raster is treated as categorical.

The WoE fitting procedure starts after the transformation continuous —
categorical. The change map is divided into series of binary maps (one map per
a transition class), then the set of weights are estimated for every binary map.

3.4.4 Multi criteria evaluation

The goal of the method is to predict a transition class encoded in the change
map. Factor rasters are input data, places where a transition occurs are target
values. MCE takes pairwise comparison matrix of factors and calculates weights
of every factor. This means, that a user must specify the comparison matrix for
every transition class. But count of transition classes increases as O(n?), where
n is count of landuse categories (for example if n = 4, we have 16 transition
classes). To specify all comparison matrices for all transitions is too long and
boring, that’s why the MCE model predicts one transition class only.

The method needs normalization of factor rasters: this implementation uses
a linear combination of factors, therefore they should be transformed to [0, 1].
The module uses the next transformation (it differs from ANN and LR normal-
ization, see Section 3.3.2):

X — Xmin

Xnorm =
Xmax - szn

where X,,orm is normalized raster value, X is initial raster value, X,,;, is the
min value of the raster, X,,,, is the max value of the raster.

3.5 Simulation

Simulation module performs land use change evaluation procedure. It takes as
input the next data:

e Initial state raster;
e Factor rasters;
e Model.

Initial state raster contains information about current land use categories,
factor rasters contain information about explanatory variables. Model is a pre-
dictor that calculates transition potentials in the condition of the factors and
current land use.

So module doesn’t uses implicit transition rules, it uses transition potentials
generated by the models. The neighborhood effect is achieved if a model uses
neighborhood during training, for example logistic regression has a coefficient
for every neighbor and the coefficient affects the transition potential. If model
doesn’t uses neighborhood, Simulator takes into account only general patterns.

The module works as follow scheme:
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1. Simulator takes transition probabilities from the transition matrix and
calculates count of pixels that has to be changed (for every transition
class);

2. Simulator calls a model, pass to it initial state raster and factor rasters;

3. The model scans pixels of the rasters (and its neighbors if the model
uses neighborhood) and calculates transition potentials of every transition
class;

4. Simulator constructs a ’certancy’ raster: the pixel of the raster are the
difference between two most large potentials of correspondent pixels of
transition potential rasters. As result the raster contains the model con-
fidence: the bigger is difference, the bigger is confidence;

5. Simulator constructs a raster of the most probable transitions: the pixels
of the raster are the transition class with the biggest potential of transition.
This raster is an auxiliary raster; it is used during the next stage;

6. For every transition class Simulator searches in the raster of the most
probable transitions a needed count of pixels with the greatest confidence
and changes the category of the pixels. If confidence of two or more pixels
are close, then random choice of the pixel is used.

The described scheme is used if the user specified only one iteration of sim-
ulation. If several iterations have to be preformed, in general the scheme is
the same, but initial state rasters are changed on the next iterations: the first
simulated map is the initial state map for thy second iteration, the result of the
second iteration is the initial states of the third iteration and so on.

3.6 Validation

Validation module allows to check accuracy of the simulation. MOLUSCE has
three types of validation:

e Kappa statistics;
e Error budget validation;

e Error map validation.

3.6.1 Kappa
The module calculates three types of kappa statistic. Let

e c is count of raster categories,

e p;; is the 7, j-th cell of contingency table,
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Table 3.4: Two-class error table.
Reference map C1 Reference map C2

Simulated map C1 Hit Misses
Simulated map C2 False alarms Hit

pir is the sum of all cells in 4-th row, pp; is the sum of all cells in j-th
column,

o P(A) =>1_ piis
e P(E)= 2;1 piTPT,
o Pmax = E;';:l min(piTapTi)

In this case the kappa statistics can be defined by the next rules.

Kappa:
_ P(A) - P(E)
K== P(E)
Kappa location:
W _ P(A) = P(E)
loc — Pmax P(E)
Kappa histogram:
Praz — P(E)
K —
" T1-P(E)

3.6.2 Error budget

MOLUSCE uses Error Budget technique [3, Chapter 17]. Currently the pdf can
be found here: http://www.econgeography.org/ rpontius/pontius_suedmeyer_2004_rsgisaa.pdf

Error map

MOLUSCE produces map of errors. This map contains information about false
predictions in simulated raster. The error map can be constructed by compas-
sion of simulated map and reference map. The errors of simulation are stored
in the error map.

Error map creating procedure has two modifications: two map comparison
case and three map comparison case.
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Two maps comparison case. This modification compares simulated map
and reference map.

Traditional approach to two class (C1 and C2) problem uses three types of
prediction statuses (see Table 3.4): ”hits, misses, false alarm”.

But in case of N class problem the classification ”hits, misses, false alarm” is
not so good because the terms ”Misses” and ”False Alarms” became ambiguous:
there are different types misses/false alarms between different classes.

MOLUSCE uses common N-class approach, when error map contains every
transition type error marked by a particular color, "Hits” are transparent. The
errors are coded as transitions in change maps (see Section 3.2).

If a transition for a certain location was simulated correctly then the pixel
is transparent (white color on the picture). If the transition was simulated
incorrect, then the pixel is colored.

Three maps comparison case. This modification uses three rasters for
checking: simulated map, reference map and initial map.

The same idea of comparison is used for checking persistent classes and
simulation errors. Persistent classes are pixels that are constant in initial raster,
reference raster and simulated raster. Such pixels are marked by a certain
color, "Hits” are transparent and transition errors are marked as in the two-
map comparison problem.
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