
Geospatial Simulation: A model-independent, open-source geospatial tool for managing point-based
environmental model simulations at multiple spatial locations

Dr. Kelly R. Thorp
USDA-ARS, Arid Land Agricultural Research Center
kelly.thorp@ars.usda.gov
Last Updated: January 17, 2019

If you use Geospatial Simulation, please cite the following paper(s):
Thorp, K. R., Bronson, K. F., 2013. A model-independent, open-source geospatial tool for managing
point-based environmental model simulations at multiple spatial locations. Environmental Modeling &
Software. 50:25-36. doi:10.1016/j.envsoft.2013.09.002

Thorp, K. R., Hunsaker, D. J., French, A. N., Bautista, E. Bronson, K. F., 2015. Integrating geospatial data
and cropping system simulation within a geographic information system to analyze spatial seed cotton
yield, water use, and irrigation requirements. Precision Agriculture 16(5), 532-557. doi:10.1007/s11119-
015-9393-x

Overview
The purpose of Geospatial Simulation is to provide an interface to run point-based, one-dimensional
environmental simulation models using geospatial data contained in a geographic information system
(GIS). Geospatial Simulation provides software tools for geoprocessing spatial datasets, for running
model simulations for unique polygon features, and for calibrating model parameters to site-specific
conditions. Many of the software tools available within Geospatial Simulation permit a user to establish
and manage a 'base layer' polygon shapefile, which stores the geospatial data that is passed to and from
the input and output files of the simulation model. The software was developed as a plug-in for the
open-source Quantum GIS environment. An important feature is the ability of the software to interface
with the input and output files of any point-based environmental simulation model. Instructions for use
of the six software tools included in Geospatial Simulation and for development of the required files to
interface the GIS with a simulation model are given below.

Geoprocessing Tools
Many of the geoprocessing tools required to process spatial data are now available through native
Quantum GIS tools in its Processing Toolbox. Additional geoprocessing tools within Geospatial
Simulation do not aim to duplicate this functionality but rather to extend it. The Processing Toolbox and
other QGIS tools should be implemented to the extent that they are useful to prepare the base layer
polygon shapefile required by Geospatial Simulation. Additional tools have been created within
Geospatial Simulation for handling raster datasets (discontinued after v 1.2) and for summarizing
geospatial data within the base layer polygons.

Tool #1: Raster to Vector Converter
NOTE: This tool was discontinued after GeoSim v 1.2, because the QGIS Processing Toolbox can
accomplish the task of converting raster to vector layers.

The Raster to Vector Converter (Fig. 1) provides a tool for processing raster data layers, such as kriged
soil texture maps or remote sensing images. Essentially, the tool converts the raster layer to a vector
layer. The Vector Geoprocessor (discussed below) and other vector data processing tools within

Quantum GIS can then be used to process the data. Beginning with Quantum GIS version 1.8.0, a tool to
polygonize raster layers to vector layers was provided by default, which was not available when
Geospatial Simulation development began. However, it is my understanding that the default tool does
not currently handle floating point images. The Raster to Vector Converter supplied with GeoSim does
handle floating point; however, the algorithm can be quite slow for large images. To use the tool,
complete the following steps in the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Raster to Vector Converter
2. Select the raster layer to be processed. The combo box will be populated with all raster data

layers available in the current workspace.
3. Select the type of vector layer to be created. By selecting the 'point layer' option, a shapefile of

points at center of each raster cell will be created. By selecting the 'polygon layer' option, a
shapefile of polygons for each raster cell will be created.

4. Specify a file path and file name for the output shapefile.
5. Click Run. For high resolution raster layers, the process can take many hours and can create

quite large shapefiles.

Figure 1. The graphic user interface for the Raster to Vector Converter tool.

Tool #2: Vector Geoprocessor
The Vector Geoprocessor (Fig. 2) permits a user to process vector data layers to summarize data within
the geospatial units established by the base layer polygon shapefile. By selecting 1) the base layer
polygon shapefile, 2) another layer containing the data to be processed, 3) the attributes of interest in
the layer to be processed, and 4) a processing objective, the tool will process the data contained within
the process layer and append the results to the base layer. To use the tool, complete the following
steps in the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Vector Geoprocessor
2. Select the processing objective from the list of available options, as follows:

a. Find mean value of points (process layer) within polygons (base layer).
b. Find median value of points (process layer) within polygons (base layer).
c. Find maximum value of points (process layer) within polygons (base layer).
d. Find minimum value of points (process layer) within polygons (base layer).

e. Find (area-weighted) mean value of polygons (process layer) within polygons (base
layer).

f. Find maximum area polygon (process layer) within polygons (base layer). This option
returns the attribute from polygon having the maximum area within the base layer
polygons. If two or more polygons have the same attribute value, their areas are
summed.

g. Add attributes of polygons (process layer) to the points (base layer) falling within the
polygon. Likely, this is not explicitly needed for Geospatial Simulation but is nonetheless
useful for other geoprocessing tasks.

3. Select the base layer polygon shapefile. For processing options 'a' through 'f' above, the combo
box will be populated with all polygon shapefiles in the current workspace. For processing
option 'g' above, the combo box will be populated with all point shapefiles in the current
workspace.

4. Select the layer to be processed. For processing option 'a' through 'd' above, the combo box will
be populated with all point shapefiles in the current workspace. For processing options 'e'
through 'g' above, the combo box will be populated with all polygon shapefiles in the current
workspace.

5. Select the attributes (data fields) from the process layer. For processing options 'a' through 'e'
above, the list box will be populated with all numeric data fields in the process layer. For
processing options 'f' and 'g' above, the list box will be populated with all text data fields in the
process layer.

6. Click Run.

Figure 2. The graphic user interface for the Vector Geoprocessor tool.

Simulation Control
Geospatial Simulation is designed to control a simulation model that has been previously compiled as a
separate executable file. It will automate simulations by passing geospatial data from unique spatial
units (the base layer polygons) to the model input files, and it will similarly pass key model outputs back
to the GIS database (Fig. 3). An important feature of the software is its ability to control any one-
dimensional simulation model that uses input and output files. In other words, the software is designed
to be model independent. It accomplishes this using 'template' files (*.gst) to interface with the model
input files and 'instruction' files (*.gsi) to interface with the model output files. A control file (*.gsc)
instructs the GIS how to utilize the template and instruction files to control the model. Template file,
instruction file, and control file concepts are discussed below.

Figure 3. The Simulation Controller tool within Geospatial Simulation (GeoSim) uses template files to
interface the geospatial data from the base layer polygon shapefile with the simulation model input

files. It uses instruction files to search model output files for the geospatial data to be returned to the
base layer.

Template Files
A template file (*.gst) must be created for each model input file that receives spatial data from the GIS.
The template file is essentially a replicate of the actual input file that the model will read. Therefore,
template files are highly specific to the model to be implemented. Within the template file, a 'unique
code' or a unique combination of characters, numerals, symbols, and spaces should be included at the
location where Geospatial Simulation will place a geospatial data value. This unique code should not
appear anywhere else in any of the model input files other than where geospatial data values should be
written. Prior to running a model for a spatial unit, Geospatial Simulation will search the template files
for each unique code and overwrite the unique code with a data value for that spatial unit. The control
file provides the relationship between each unique code and its respective data field in the GIS database
(Fig. 4).

Figure 4. Excerpts from a) a Quantum GIS attribute table, b) a control file relating attribute names to
unique character codes, c) a template file using the unique codes to denote locations for writing data,
and d) a model input file with data passed from the GIS database. These excerpts demonstrate the
transfer of drained upper limit (DUL) soil parameters at depths of 30, 45, 60, 90, 120, 150, and 180 cm to
the model input file for a common crop growth model.

An example of a template file used to create a soil input file for a common crop growth model
demonstrates how a template file is constructed (Example 1). The first line of the file should contain the
following text: Geospatial Simulation Template (GST) File. Subsequent lines replicate the actual data file
expected by the model with unique codes as place holders for data that Geospatial Simulation will
obtain from the GIS database. For this particular example, all the unique codes begin with a '#' symbol.
However, any unique code can be used as long as the unique string of characters is found only where
geospatial data should be written. There are many unique codes in this example (i.e., #SLL1, #SAT4,
#SRG9, etc.), each serving as a place holder for various soil hydraulic parameters at different soil depths.
Notice that unique codes can be repeated at more than one location in the file. Geospatial Simulation
will overwrite the unique code anywhere in the file that it is found. Utilizing the information provided in
the template files and the control file (discussed below), Geospatial Simulation will create the model's
soil input file for a given spatial unit by using data from the GIS database to overwrite the unique codes
(Example 2).

Geospatial Simulation Template (GST) File
*SOILS : Maricopa Agricultural Center, Maricopa, Phoenix, Arizona

*AZMC110001 F033
@SITE COUNTRY LAT LONG SCSFAMILY
 MARICOPA USA 33.08 -111.97
@ SCOM SALB SLU1 SLDR SLRO SLNF SLPF SMHB SMPX SMKE
 -99 0.20 12.00 0.30 80.0 1.00 1.00 IB001 IB001 IB001
@ SLB SLMH SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF
SLNI
 5 AP #SLL1 #DUL1 #SAT1 #SRG1 #KS1 #BD1 0.58 -99. -99. -99. -99.
 15 AP #SLL1 #DUL1 #SAT1 #SRG2 #KS1 #BD1 0.58 -99. -99. -99. -99.
 30 AP #SLL1 #DUL1 #SAT1 #SRG3 #KS1 #BD1 0.58 -99. -99. -99. -99.
 45 C1 #SLL2 #DUL2 #SAT2 #SRG4 #KS2 #BD2 0.17 -99. -99. -99. -99.
 60 C1 #SLL3 #DUL3 #SAT3 #SRG5 #KS3 #BD3 0.17 -99. -99. -99. -99.
 90 C1 #SLL4 #DUL4 #SAT4 #SRG6 #KS4 #BD4 0.17 -99. -99. -99. -99.
 120 C1 #SLL5 #DUL5 #SAT5 #SRG7 #KS5 #BD5 0.17 -99. -99. -99. -99.
 150 C2 #SLL6 #DUL6 #SAT6 #SRG8 #KS6 #BD6 0.17 -99. -99. -99. -99.
 180 C2 #SLL7 #DUL7 #SAT7 #SRG9 #KS7 #BD7 0.17 -99. -99. -99. -99.
 210 C2 #SLL7 #DUL7 #SAT7 #SR10 #KS7 #BD7 0.17 -99. -99. -99. -99.

Example 1. A template file for a soil input file of a crop growth model. For this particular case, all the
unique codes begin with a '#' symbol.

*SOILS : Maricopa Agricultural Center, Maricopa, Phoenix, Arizona

*AZMC110001 F033
@SITE COUNTRY LAT LONG SCSFAMILY
 MARICOPA USA 33.08 -111.97
@ SCOM SALB SLU1 SLDR SLRO SLNF SLPF SMHB SMPX SMKE
 -99 0.20 12.00 0.30 80.0 1.00 1.00 IB001 IB001 IB001
@ SLB SLMH SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF
SLNI
 5 AP 0.124 0.245 0.405 0.884 0.39 1.58 0.58 -99. -99. -99. -99.
 15 AP 0.124 0.245 0.405 0.824 0.39 1.58 0.58 -99. -99. -99. -99.
 30 AP 0.124 0.245 0.405 0.734 0.39 1.58 0.58 -99. -99. -99. -99.
 45 C1 0.124 0.243 0.403 0.644 0.42 1.58 0.17 -99. -99. -99. -99.
 60 C1 0.124 0.241 0.401 0.554 0.46 1.59 0.17 -99. -99. -99. -99.
 90 C1 0.098 0.204 0.384 0.374 0.94 1.63 0.17 -99. -99. -99. -99.
 120 C1 0.091 0.193 0.383 0.194 1.19 1.64 0.17 -99. -99. -99. -99.
 150 C2 0.087 0.188 0.384 0.014 1.33 1.63 0.17 -99. -99. -99. -99.
 180 C2 0.092 0.197 0.385 0.000 1.09 1.63 0.17 -99. -99. -99. -99.
 210 C2 0.092 0.197 0.385 0.000 1.09 1.63 0.17 -99. -99. -99. -99.

Example 2. Soil input file created by Geospatial Simulation using the template file in Example 1.

Instruction Files
An instruction file (*.gsi) must be created for each model output file that contains spatial data to be
passed to the GIS database. The instruction file essentially tells the GIS how to read the model output
file and extract the data values. Three commands are available to provide the instruction, including
Plus, Find, and Get. Plus is used to move forward a given number of lines. Find is used to find a given
set of unique characters. Get is used to acquire the data value. The control file provides the

relationship between the attribute (field) in the GIS database and the type of data value that is read
from the output file (Fig. 5).

Figure 5. Excerpts from a) a crop model output file, b) an instruction file providing instructions to read
data for the HWAH attribute (crop yield, kg ha-1) from the model output file, c) a control file relating the
attribute name to the data type expected by the GIS, and d) a Quantum GIS attribute table showing the
HWAH value passed from the output file. After reading the model output file, the instruction file uses
two commands to get the HWAH value: "Plus4" moves down four lines in the file and "Get165:171"
retrieves the characters between cursor positions 165 and 171.

An example of an instruction file used to read the evapotranspiration output file for a common crop
growth model demonstrates how an instruction file is constructed (Example 3). The first line of the file
should contain the following text: Geospatial Simulation Instruction (GSI) File. Subsequent lines provide
the commands for locating a data value within the model output file. Data values are obtained in the
order given in the instruction file. Commands for one data value should all reside on one line, separated
by commas. The first item on each line gives the attribute (field) name in the GIS database where the
data value will be stored. The file in Example 3 will read two data values, one for the "ET146" attribute
and one for the "ET266" attribute. Subsequent items give "Plus" and/or "Find" commands as needed to
reach the appropriate line in the file. Each "Plus" command is followed by an integer number that gives
the number of lines to move forward. Each "Find" command is followed by a string of characters that
will be located in the file. The goal is to use "Plus" and "Find" commands to locate the appropriate line
in the model output file. For consecutive "Plus" and "Find" commands for the same data value, the
algorithm searches from the line determined by the previous command. On opening the file, the
algorithm is set to read the first line. Thus, if a data value must be read from the first line in the file, no
"Plus" or "Find" commands are needed. Once the appropriate line is located, a "Get" command is used
to obtain the data value. Each "Get" command is followed by a pair of integers, separated by a colon,
which give the cursor positions for the data value to be read. Cursor positions are counted from the left
hand side of the file, beginning with zero. Think of it as counting the spaces between characters rather
than the characters themselves. The pair of integers for the "Get" command should provide the cursor
positions that straddle the data value of interest. After finding one data value, the algorithm begins
looking for the next data value from the first line in the file. Thus, if two data values are to be obtained
from the same line, the "Plus" or "Find" commands will need to be repeated for the second data value.

In Example 3, the algorithm will seek forward 54 lines from the first line in the file and then get the
"ET146" data value between cursor positions 101 and 109. It will then start over at the first line of the
file and seek forward until it finds "2009 266" as a text string. From that line, it will get the "ET266" data
value between cursor positions 101 and 109. These data values will be stored in the "ET146" and
"ET266" fields for the current feature within the GIS database.

Geospatial Simulation Instruction (GSI) File
ET146,Plus54,Get101:109
ET266,Find2009 266,Get101:109

Example 3. An instruction file for reading an evapotranspiration output file of a crop growth model.

Control File
The control file (*.gsc) instructs the GIS how to use the template and instruction files to control a
simulation model for unique spatial units. Whereas the template and instruction files are unique
depending on the simulation model to be implemented, the format of the control file is specific to the
Geospatial Simulation algorithm.

An example of the control file used to operate a common crop growth model is given in the lengthy
Example 4. The first line of the file should contain the following text: Geospatial Simulation Control
(GSC) File. Seven key character strings are used to denote sections within the file. Table 1 provides
these character strings and a summary of the purpose for each of the sections in the file. A blank line
should be included between each section in the control file. The first section (*GSC1) provides the path
to the model executable file. All template files, instruction files, model input and output files, and the
model executable file should exist at this path. The second section (*GSC2) provides the name of the
base layer polygon shapefile that contains the geospatial data to be utilized in the simulations. The third
section (*GSC3) provides the names of the template files and corresponding model input files. Each set
of files is given on a new line and separated by a comma. For simplicity, the name of the template file
can be the name of the model input file with the '.gst' extension appended (Example 4). The fourth
section (*GSC4) provides the names of the attributes (fields) in the GIS database and their
corresponding unique codes that appear in the template files. Geospatial Simulation will search all
template files in section '*GSC3' for all the unique codes in section '*GSC4' and overwrite the codes with
the data value for the corresponding attribute. Therefore, the unique codes must be unique among all
template files included in section '*GSC3'. Many of the unique codes specified in '*GSC4' in Example 4
are used to write the soil parameter data to the model's soil input file, as shown in Example 1 and
Example 2. The fifth section (*GSC5) provides the names of the instruction files and corresponding
model output files. Each set of files is given on a new line and separated by a comma. For simplicity,
the name of the instruction file can be the name of the model output file with the '.gsi' extension
appended (Example 4). The sixth section (*GSC6) provides the names of the attributes (fields) in the
GIS database and their corresponding data type. If the attribute already exists in the database, its values
will be overwritten. Otherwise, a new field will be appended to the existing database. Three data types
can be specified, including Integer, Real, and String. Following each data type specification is a numeric
value in parentheses. For Integer and String, the numeric value is an integer which specifies the field
length. For Real, the numeric value is a decimal number, where the integral number gives the field
length and the decimal number gives the decimal precision. The seventh section (*GSC7) provides a
command line text string for running the simulation model.

__
Geospatial Simulation Control (GSC) File

*GSC1: ModelDirectory
C:\Users\kthorp\Documents\USDA-ALARC\02-Cotton\2009Cotton\CROPGRO-Cotton\

*GSC2: BaseLayer
09F033_HarvPolys12

*GSC3: TemplateFile,InputFile
AZ.sol.gst,AZ.sol
AZMC0901.COX.gst,AZMC0901.COX

*GSC4: InputAttribute,Code
KSAT030,#KS1
KSAT045,#KS2
KSAT060,#KS3
KSAT090,#KS4
KSAT120,#KS5
KSAT150,#KS6
KSAT180,#KS7
SDUL030,#DUL1
SDUL045,#DUL2
SDUL060,#DUL3
SDUL090,#DUL4
SDUL120,#DUL5
SDUL150,#DUL6
SDUL180,#DUL7
SLLL030,#SLL1
SLLL045,#SLL2
SLLL060,#SLL3
SLLL090,#SLL4
SLLL120,#SLL5
SLLL150,#SLL6
SLLL180,#SLL7
SSAT030,#SAT1
SSAT045,#SAT2
SSAT060,#SAT3
SSAT090,#SAT4
SSAT120,#SAT5
SSAT150,#SAT6
SSAT180,#SAT7
SBDM030,#BD1
SBDM045,#BD2
SBDM060,#BD3
SBDM090,#BD4
SBDM120,#BD5
SBDM150,#BD6
SBDM180,#BD7
SRGF005,#SRG1
SRGF015,#SRG2
SRGF030,#SRG3
SRGF045,#SRG4
SRGF060,#SRG5
SRGF090,#SRG6

SRGF120,#SRG7
SRGF150,#SRG8
SRGF180,#SRG9
SRGF210,#SR10
IrrDOY1,#D1
IrrRate1,#R1
IrrDOY2,#D2
IrrRate2,#R2
IrrDOY3,#D3
IrrRate3,#R3
IrrDOY4,#D4
IrrRate4,#R4
IrrDOY5,#D5
IrrRate5,#R5
IrrDOY6,#D6
IrrRate6,#R6
IrrDOY7,#D7
IrrRate7,#R7
IrrDOY8,#D8
IrrRate8,#R8
IrrDOY9,#D9
IrrRate9,#R9
EFIR,#EIR
SH2O005,#ICW1
SH2O015,#ICW2
SH2O030,#ICW3
SH2O045,#ICW4
SH2O060,#ICW5
SH2O090,#ICW6
SH2O120,#ICW7
SH2O150,#ICW8
SH2O180,#ICW9
SH2O210,#IC10

*GSC5: InstructionFile,OutputFile
Summary.OUT.gsi,Summary.OUT
ET.OUT.gsi,ET.OUT
SoilWat.OUT.gsi,SoilWat.OUT

*GSC6: OutputAttribute,Type
HWAH,Integer(5)
LAIX,Real(3.1)
CWAM,Integer(6)
ET266,Real(7.2)
ET146,Real(7.2)
SP266,Real(7.2)
SP146,Real(7.2)
ROCM,Integer(5)

*GSC7: CommandLine
dscsm045.exe B DSSBatch.v45

Example 4. A control file for running a common crop growth model within Geospatial Simulation.

Table 1. Title and purpose of sections in the control file.
Section Title Section Purpose
*GSC1: ModelDirectory Provide the path to the model executable file
*GSC2: BaseLayer Provide the name of the base layer containing the

geospatial data
*GSC3: TemplateFile,InputFile Provide the names of the template files and the

corresponding model input file names
*GSC4: InputAttribute,Code Provide the names of the attributes (fields) in the

GIS database and their corresponding unique codes
that appear in the template files

*GSC5: InstructionFile,OutputFile Provide the names of the instruction files and the
corresponding model output file names

*GSC6: OutputAttribute,Type Provide the names of the attributes (fields) in the
GIS database and the corresponding data format.

*GSC7: CommandLine Provide the command line string required to run
the simulation model

Tool #3: Control File Creator
The Control File Creator (Fig. 6) is used to generate the control file (*.gsc), which specifies how
geospatial data is passed from the GIS database to the model input files and from the model output files
to the GIS database. To use the tool, complete the following steps in the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Control File Creator
2. To load an existing control file, click 'Load File' and select the file to be loaded.
3. Specify the model working directory by clicking 'Browse' and navigating to the path of the model

executable.
4. Specify the base layer name by selecting the base layer containing the geospatial data. The

combo box is populated with all polygon shapefiles in the current workspace.
5. Specify the model input file relations by typing the names of the template files and

corresponding model input files.
6. Specify the input attribute and unique code relations. Double clicking an item in the 'Input

Attribute' column will give a list of attribute (field) names in the selected base layer. Type the
unique code for each input attribute.

7. Specify the model output file relations by typing the names of the instruction files and the
corresponding model output files.

8. Specify the output attribute and types by typing the name of the output attributes and
corresponding data type. If the output attribute already exists in the database, data values will
be overwritten. Otherwise, a new attribute will be appended to the existing database. Options
for data type are Integer, Real, and String. Each type specification is followed by a numeric
value in parenthesis. For Integer and String, the numeric value is an integer giving the field
length. For Real, the numeric value is a decimal value, where the integral number gives the field
length and the decimal number gives the decimal precision.

9. Specify the system command by typing the command line text used to run the simulation
model.

10. Save the control file to the hard disk by clicking 'Save File'.

Figure 6. The graphic user interface for the Control File Creator tool.

Tool #4: Simulation Controller
After setting up the template files, instruction files, and control file, the Simulation Controller (Fig. 7) can
be implemented to conduct the simulations for all geospatial units in the base layer shapefile.
Alternatively, the tool will also run simulations only for selected features in the base layer. To use the
tool, complete the following steps in the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Simulation Controller
2. Click Browse and open the control file.
3. To run only for selected features, check 'Selected features only.' Otherwise, leave unchecked.
4. Click 'Run'
5. Standard output from the model, if any, will be printed in the simulation window.

Figure 7. The graphic user interface for the Simulation Controller tool.

Simulation Optimization
It is often necessary to calibrate a simulation model uniquely for the conditions at a given location.
Geospatial Simulation provides an optimization tool for this purpose. The optimization algorithm utilizes
the control file (and thus the instruction files and template files as well) to run the simulation model
many times for each geospatial unit. The objective is to adjust model input parameters to minimize
error between an observed and simulated quantity. An optimization file must be created to instruct the
GIS how to conduct the optimization. The optimization routines represent an additional layer of
simulation complexity beyond simply running the simulation model for a geospatial dataset. Thus, it is
wise to first set up Geospatial Simulation to run a simulation model (by developing a control file) before
attempting to optimize the model. Geospatial Simulation implements a 'simulated annealing'
optimization routine.

Optimization File
An optimization file (*.gso) instructs the GIS how to conduct the optimization routine. An example of
the optimization file used to optimize the crop coefficient and leaf growth parameters of a common
crop growth model is given in Example 5. The first line of the file should contain the following text:
Geospatial Simulation Optimization (GSO) File. Five key character strings are used to denote sections
within the file. Table 2 provides these character strings and a summary of the purpose for each of the
sections in the file. A blank like should be present between each section in the optimization file. The

first section (*GSO1) provides the path to the control file, which specifies how to use the template files
and instruction files to pass data to model input files and to retrieve data from the model output files.
The second section (*GSO2) provides the name of the base layer polygon shapefile that contains the
geospatial data to be utilized in the simulations. This will be automatically specified using information
from the control file. The third section (*GSO3) provides the parameters to be optimized, the initial
values for the parameters, and their upper and lower bounds. Each parameter is given on a new line
and associated data is separated by commas. The first entry provides the attribute (field) name of the
parameter to be optimized. The attribute must also appear in the control file, such that the parameter
values can be passed to the model. The attribute name is followed by the initial parameter value, the
lower bound value, the upper bound value, and a code value. The code value is used for cases where
the optimization occurs collectively over a group of spatial features. In this case, it may be necessary to
optimize the same parameter, but uniquely for each spatial feature. The code value is used to specify
the parameters in the order in which the model simulations are conducted. Example 6 demonstrates
the use of the code value to optimize the 'PercentVol' parameter (which specifies the percent volume of
total irrigation water to be distributed among 20 spatial zones) by minimizing the error in spatial yield
simulation among the zones. If the model optimization is to be performed independently for each
spatial feature or if the parameter does not need to be uniquely optimized for spatial features in a
group, a code value of '0' should be used (Example 5). The fourth section (*GSO4) gives the attribute
(field) names in the GIS database that contain the measured and simulated values to be compared
during the optimization process and a factor value. The factor value is multiplied by the resulting
difference between measured and simulated values. It is useful for optimizations where two or more
measured versus simulated quantities have errors that vary by an order of magnitude or more, due
possibly to different units for the values. The factor value is multiplied by the error term for each
quantity and can thus be set such that the errors have reasonably similar orders of magnitude. This will
improve the performance of the optimizer. If all the errors have the same units or reasonably similar
magnitudes, the factor can be set to one. Measured values to be compared to simulated values during
optimization can likely be obtained using the geoprocessing tools described above. Simulated values
will need to be passed from a model output file to the GIS database using an instruction file. Examples 5
demonstrates an optimization that simultaneously minimizes error between measured and simulated
cotton lint yield and measured and simulated cotton evapotranspiration. The fifth section (*GSO5)
provides the eleven input parameters needed for the simulated annealing optimization algorithm.
These parameters are further discussed below.

Geospatial Simulation Optimization (GSO) File

*GSO1: ControlFile
C:/Users/kthorp/Documents/USDA-ALARC/02-Cotton/2009Cotton/CROPGRO-Cotton/F33-
2009b.gsc

*GSO2: BaseLayer
09F033_HarvPolys27

*GSO3: Parameter,Initial,LB,UB,Code
EORATIO,1.25,1.25,1.65,0
SLAVR,120.0,120.0,220.0,0
SIZLF,240.0,240.0,340.0,0

*GSO4: Measured,Simulated,Factor
LintSeed,HWAH,0.0002
ObsETAdj,SimET,0.0011

*GSO5: AnnealingParameters
10.0
None
10
0.005
None
20
None
1.0
1.0
1.0
100

Example 5. An optimization file for optimization of a common crop growth model within Geospatial
Simulation.

Geospatial Simulation Optimization (GSO) File

*GSO1: ControlFile
C:/Users/kthorp/Documents/USDA-ALARC/02-Cotton/2009Cotton/CROPGRO-Cotton/F33-
2009.gsc

*GSO2: BaseLayer
09F033_HarvPolys8

*GSO3: Parameter,Initial,LB,UB,Code
PercentVol,0.0286,0.01,0.04,1
PercentVol,0.0286,0.01,0.04,2
PercentVol,0.0286,0.01,0.04,3
PercentVol,0.0286,0.01,0.04,4
PercentVol,0.0286,0.01,0.04,5
PercentVol,0.0286,0.01,0.04,6
PercentVol,0.0286,0.01,0.04,7
PercentVol,0.0286,0.01,0.04,8
PercentVol,0.0286,0.01,0.04,9
PercentVol,0.0286,0.01,0.04,10
PercentVol,0.0286,0.01,0.04,11
PercentVol,0.0286,0.01,0.04,12
PercentVol,0.0286,0.01,0.04,13
PercentVol,0.0286,0.01,0.04,14
PercentVol,0.0286,0.01,0.04,15
PercentVol,0.0286,0.01,0.04,16
PercentVol,0.0286,0.01,0.04,17
PercentVol,0.0286,0.01,0.04,18
PercentVol,0.0286,0.01,0.04,19
PercentVol,0.0286,0.01,0.04,20

*GSO4: Measured,Simulated,Factor
LintSeed,HWAH,1

*GSO5: AnnealingParameters
10.0
None
10
0.0001
None

None
None
1.0
1.0
1.0
100000.0

Example 6. An optimization file for conducting a group optimization, where the same parameter is
optimized to different values for a series of spatial features.

Table 2. Title and purpose of sections in the optimization file.

Section Title Section Purpose
*GSC1: ControlFile Provide the path to the control file
*GSC2: BaseLayer Provide the name of the base layer containing the

geospatial data
*GSC3: Parameter,Initial,LB,UB,Code Provide the names of the attributes (fields)

containing values to be adjusted using optimization
and give the initial value, lower bound, and upper
bound for the parameters

*GSC4: Measured,Simulated,Factor Provide the names of the attributes (fields) in the
GIS database that contain the measured and
simulated data to be compared during optimization

*GSC5: AnnealingParameters Provide the values for the input parameters to the
simulated annealing algorithm

Tool #5: Optimization File Creator
The Optimization File Creator (Fig. 8) is used to generate the optimization file (*.gso), which instructs the
GIS how to conduct the optimization routine. Prior to conducting optimizations, template files,
instruction files, and a control file must be developed. To use the tool, complete the following steps in
the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Optimization File Creator
2. To load an existing control file, click 'Load File' and select the file to be loaded.
3. Specify the control file by clicking 'Browse' and navigating to the path of the control file.
4. Specify the base layer name by selecting the base layer containing the geospatial data. This will

be automatically set based on the information in the control file.
5. Specify the input attributes to be optimized, the initial value, the lower bound, the upper bound,

and the code value. Double clicking an item in the 'Attribute' column will give a combo box of
attribute (field) names in the selected base layer. The code value is used for group
optimizations as described above.

6. Specify the attributes that contain the measured and simulated data to be compared during the
optimization. Double clicking an item in the table will give a combo box of attribute (field)
names in the selected base layer. Specify the factor value to multiply by error term, if needed.
Default factor value is 1.

7. Specify the parameter values for simulated annealing optimization.
8. Save the control file to the hard disk by clicking 'Save File'.

Figure 8. The graphic user interface for the Simulation Optimization File Creator.

Simulated Annealing Optimization Algorithm
The simulated annealing algorithm used in Geospatial Simulation was adapted from that developed for
the open-source 'scipy' package of the Python programming language. Simulated annealing is a global
search algorithm that mimics the annealing process in metallurgy. Eleven parameters govern the
performance of the algorithm, including the initial temperature, the final temperature, the dwell

(number of evaluations per parameter at each temperature), the tolerance, the maximum number of
evaluations, the maximum number of iterations (cooling steps), and the maximum number of accepted
evaluations. The m, n, and quench parameters affect the cooling rate, and the boltzmann parameter
affects the acceptance and rejection criteria. During the course of the optimization, the algorithm tracks
three parameter sets: the current set, the previous set, and the best (optimum) set. After each function
evaluation, the algorithm must decide whether to accept or reject the evaluation. If the current
evaluation is better than the previous evaluation, the current parameter set is accepted and the next
parameter set will be calculated based on the current parameter set. If the current evaluation is not
better than the previous evaluation, the algorithm uses a probabilistic function to determine acceptance
or rejection. The algorithm calculates the following P value:
P = EXP(-E/(B*T))
where E is the error difference between the current evaluation and the previous evaluation, B is the
boltzmann parameter, and T is the current temperature. The value of P will range from 0.0 to 1.0. If P is
greater than a random number chosen from a uniform distribution between 0.0 and 1.0, the evaluation
is accepted and the next parameter set will be calculated from the current parameter set. Otherwise,
the evaluation is rejected and the next parameter set will be calculated from the previous parameter
set. If the current evaluation is better than the best evaluation, the current parameter set becomes the
optimum parameter set. As the temperature cools, P values will decline, and the chance of accepting an
evaluation with higher error than the previous evaluation is reduced.

The initial temperature parameter sets the starting temperature for the algorithm. The dwell parameter
specifies the number of evaluations per parameter at each temperature. Thus, the number of function
evaluations at each cooling step is dwell times the number of parameters to be optimized. The dwell
parameter can have a substantial effect on how long the algorithm will run for a given dataset. To
calculate the new temperature at each cooling step, the algorithm uses the following equation:
T = T0*EXP(-C*I^Q)
where T is the new temperature, T0 is the initial temperature, C is a constant, I is the current iteration or
number of cooling steps, and Q is the quench parameter. The constant, C, is calculated as
C=M*EXP(-N*Q)
where M and N are input parameters and Q is the quench parameter.

Many of the optimization parameters govern the stop criterion for the algorithm. If the temperature
cools below the specified final temperature, the algorithm will stop. If the error of an evaluation is less
than the tolerance criteria, the algorithm will stop. If the maximum number of evaluations, iterations,
or accepted evaluations is exceeded, the algorithm will also stop. These parameters can be set to 'None'
if their stop criterion should be ignored. After the algorithm stops, the best parameter set is passed to
the GIS database, and the simulations are run once more using the best parameter set to update other
simulation outputs in the database.

Tool #6: Simulation Optimizer
After setting up the optimization file, the Simulation Optimizer (Fig. 9) can be implemented to conduct
the optimizations for all geospatial units in the base layer shapefile. Alternatively, the tool will run
optimizations only for selected features in the base layer. The simplest approach is to conduct
optimizations independently for each spatial unit. In this case, the algorithm loops through the spatial
features (or selected features) while conducting optimizations separately for each feature. However,
the algorithm can also handle grouped optimizations, where several spatial features are considered
together. The optimization file must be properly set up for this type of optimization, as discussed above.
To use the tool, complete the following steps in the Quantum GIS environment.

1. Select Plugins->Geospatial Simulation->Simulation Optimizer
2. Click Browse and open the optimization file.
3. To run only for selected features, check 'Selected features only.' Otherwise, leave unchecked.
4. To run the optimization for grouped spatial features, check 'Group selected features.'

Otherwise, leave unchecked.
5. Click 'Run'
6. Standard output from the model, if any, will be printed in the simulation (top) window.
7. Output from the optimization algorithm will be printed to the optimization (bottom) window.

This information will also be printed to a file with the same name as the optimization file and a
'.log' extension appended.

Figure 9. The graphic user interface for the Simulation Optimizer.

