Documentation¶
Module urban_sarca_lib¶
Urban Green SARCA library includes functions usable for quick estimation of radioactive deposition of the surface.
-
urban_sarca_lib.
contBiomass
(depo, IF)[source]¶ Radiaoctive contamination of biomass
Parameters: - depo – Total radioactive deposition
- IF – Interception Factor (rel.)
Returns: Radioactive contamination of biomass
- depo – Total radioactive deposition
-
urban_sarca_lib.
contMass
(cont_biomass, fresh_biomass)[source]¶ Calculation radioactive contamination of fresh vegetation mass
Parameters: - cont_biomass – Radioactive deposition on biomass
- fresh_biomass – Amount of fresh biomass of vegetation
Returns: Fresh vegetation mass radioactive contamination
- cont_biomass – Radioactive deposition on biomass
-
urban_sarca_lib.
contSoil
(depo, IF)[source]¶ Radiaoctive contamination of soil
Parameters: - depo – Total radioactive deposition
- IF – Interception Factor (rel.)
Returns: Radioactive contamination of soil
- depo – Total radioactive deposition
-
urban_sarca_lib.
hygLimit
(cont_mass, hyg_lim=1000)[source]¶ Mask for hygienic limit of biomass radioactive contamination exceeding.
Parameters: - cont_mass – Fresh vegetation mass radioactive contamination
- hyg_lim – Hygienic limit of mass radioactive contamination
. Default value is 1000
according to Czech law.
Returns: Mask for hygienic limit of biomass radioactive contamination exceeding.
- cont_mass – Fresh vegetation mass radioactive contamination
-
urban_sarca_lib.
interceptFactor
(LAI, precip, fresh_biomass, k=1.0, S=0.2)[source]¶ Interception factor for both dry and wet deposition of radionuclides.
Parameters: - LAI – Leaf Area Index (unitless)
- k – Constant of radionuclide: I = 0.5, Sr and Ba = 2.0, Cs and another radionuclides = 1.0
- precip – Precipitation amount (mm) for period of deposition (ca 24 hours after radiation accident).
- fresh_biomass – Amount of fresh biomass
- S – Mean thickness of water film at plant leaves (mm). Default S = 0.2 mm
Returns: Interception Factor (rel.)
-
urban_sarca_lib.
referLevel
(depo, ref_level1=5000, ref_level2=3000000)[source]¶ Mask of radioactive deposition for three reference levels (categories):
0: Low
1: Middle
2: High
Parameters: - depo – Total radioactive deposition
- ref_level1 – Lower reference level treshold
. Default value = 5000
- ref_level2 – Upper reference level treshold
. Default value = 3000000
Returns: Mask of radioactive deposition for three reference levels
- depo – Total radioactive deposition
Module SEBCS_lib¶
Module SEBCS_lib is library of SEBCS software (Brom 2020) designed for geographical and remotely sensed purposes, mainly for analysis of energy balance of the surface. Some methods are used within Urban Green SARCA software.
-
class
SEBCS_lib.
GeoIO
[source]¶ Class includes functions for reading of geotransformation features from raster and for writing ne rasters from numpy arrays.
-
arrayToRast
(arrays, names, prj, gtransf, EPSG, out_folder, driver_name='GTiff', out_file_name=None, multiband=False)[source]¶ Export numpy 2D arrays to multiband or singleband raster files. Following common raster formats are accepted for export:
- ENVI .hdr labeled raster format
- Erdas Imagine (.img) raster format
- Idrisi raster format (.rst)
- TIFF / BigTIFF / GeoTIFF (.tif) raster format
- PCI Geomatics Database File (.pix) raster format
Parameters: - arrays (numpy.ndarray, list) – Numpy array or list of arrays for export to raster.
- names (str, list) – Name or list of names of the exported bands (in case of multiband raster) or particular rasters (in case of singleband rasters).
- prj (str) – Projection information of the exported raster (dataset).
- gtransf (tuple) – The affine transformation coefficients.
- EPSG (int) – EPSG Geodetic Parameter Set code.
- out_folder (str) – Path to folder where the raster(s) will be created.
- driver_name (str) – GDAL driver. ‘GTiff’ is default.
- out_file_name (str) – Name of exported multiband raster.
- multiband (bool) – Option of multiband raster creation.
Returns: Raster singleband or multiband file(s)
Return type: raster
-
lyrsExtent
(in_lyrs_list)[source]¶ Check differences between size of the input layers. Function compares rasters only on basis of number of columns and rows.
Parameters: in_lyrs_list (list) – List of layers (Numpy 2D arrays). Returns: True
-
static
rasterToArray
(layer)[source]¶ Conversion of raster layer to numpy array.
Parameters: layer (str) – Path to raster layer. Returns: raster file converted to numpy array Return type: numpy.ndarray
-
readGeo
(rast)[source]¶ Reading geographical information from raster using GDAL.
Parameters: rast (str) – Path to raster file in GDAL accepted format. Returns: The affine transformation coefficients. Return type: tuple Returns: Projection information of the raster (dataset). Return type: str Returns: Pixel width (m) on X axis. Return type: float Returns: Pixel height (m) on Y axis. Return type: float Returns: EPSG Geodetic Parameter Set code. Return type: int
-
-
class
SEBCS_lib.
HeatFluxes
[source]¶ Calculation of heat fluxes and heat balance features from spectral and thermal spatial data and meteorological measurements. The class contains a set of methods for calculation heat balance, e.g. ground heat flux, sensible heat flux, latent heat flux, evaporative fraction, omega factor (decoupling coefficient), surface resistance for water vapour transfer etc. Calculation for both aerodynamic and gradient method is included.
-
aeroEF
(LE, Rn, G)[source]¶ Evaporative fraction calculated using aerodynamic method (rel.).
Parameters: - LE (numpy.ndarray) – Latent heat flux
- Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
Returns: Evaporative fraction (rel.)
Return type: numpy.ndarray
- LE (numpy.ndarray) – Latent heat flux
-
bowen
(flux_H, LE)[source]¶ Bowen ratio according to Bowen (1926)
Parameters: - flux_H (numpy.ndarray) – Sensible heat flux
- LE (numpy.ndarray) – Latent heat flux
Returns: Bowen ratio (unitless)
Return type: numpy.ndarray
- flux_H (numpy.ndarray) – Sensible heat flux
-
cwsi
(LEp, ra, rc, E_Z_sat, e_Z, rho, delta, gamma, cp=1012)[source]¶ Crop Water Stress Index calculated according to Jackson et al. ( 1981, 1988).
Parameters: - LEp (numpy.ndarray) – Potential evaporation latent heat flux
- ra (numpy.ndarray) – Aerodynamic resistance
- rc – Surface resistance for water vapour transfer
- E_Z_sat (numpy.ndarray) – Saturated water vapour pressure (kPa).
- e_Z (numpy.ndarray) – Water vapour pressure (kPa).
- rho (numpy.ndarray) – Specific air density
- delta (numpy.ndarray) – Delta function
- gamma (numpy.ndarray) – Psychrometric constant
.
- cp (float) – Thermal heat capacity of dry air
Returns: Crop Water Stress Index (CWSI)
Return type: numpy.ndarray
- LEp (numpy.ndarray) – Potential evaporation latent heat flux
-
fluxHAer
(ra, rho, dT, cp=1012.0)[source]¶ Sensible heat flux
calculated using aerodynamic method.
Parameters: - ra (numpy.ndarray) – Aerodynamic resistance for heat and momentum transfer
calculated according to Thom (1975)
- rho (numpy.ndarray) – Specific air density
- dT (numpy.ndarray) – Temperature gradient calculated according to SEBAL (Bastiaanssen et al. 1998)
- cp (float) – Thermal heat capacity of dry air
Returns: Sensible heat flux
Return type: numpy.ndarray
- ra (numpy.ndarray) – Aerodynamic resistance for heat and momentum transfer
-
fluxLE
(Rn, G, flux_H)[source]¶ Latent heat flux
Parameters: - Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- flux_H (numpy.ndarray) – Sensible heat flux
Returns: Latent heat flux
Return type: numpy.ndarray
- Rn (numpy.ndarray) – Total net radiation
-
fluxLE_EQ
(Rn, G, delta, gamma)[source]¶ Equilibrium evaporation rate
.
Parameters: - Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- delta (numpy.ndarray) – Delta function
- gamma (numpy.ndarray) – Psychrometric constant
.
Returns: Equilibrium evaporation latent heat flux
.
Return type: numpy.ndarray
- Rn (numpy.ndarray) – Total net radiation
-
fluxLE_PT
(LE_eq, alpha=1.26)[source]¶ Evaporation from wet surface according to Priestley-Taylor (1972).
Parameters: - LE_eq (numpy.ndarray) – Equilibrium evaporation latent heat flux
- alpha (float) – Priestley-Taylor alpha.
Returns: Latent heat flux for wet surface calculated by Priestley-Taylor
Return type: numpy.ndarray
- LE_eq (numpy.ndarray) – Equilibrium evaporation latent heat flux
-
fluxLE_p
(Rn, G, delta, VPD, ra, gamma, rho, cp=1012.0)[source]¶ Latent heat flux for potential evapotranspiration according to Penman (1948)
.
Parameters: - Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- delta (numpy.ndarray) – Delta function
- VPD (numpy.ndarray) – Water vapour pressure in air (kPa)
- ra (numpy.ndarray) – Aerodynamic resistance
- gamma (numpy.ndarray) – Psychrometric constant
.
- rho (numpy.ndarray) – Specific air density
- cp (float) – Thermal heat capacity of dry air
Returns: Potential evaporation latent heat flux
.
Return type: numpy.ndarray
- Rn (numpy.ndarray) – Total net radiation
-
fluxLE_ref
(Rn, G, ta, ts, U, Rh, DMT, veg_type='short', cp=1012.0)[source]¶ Latent heat flux for reference evapotranspiration according to FAO56 method (Allen et al. 1998, ASCE-ET 2000)
Parameters: - Rn (numpy.ndarray, float) – Rn: Total net radiation
- G (numpy.ndarray, float) – Ground heat flux
- ta – Air temperature measured at meteostation at approx. 2 m.
:type ta: numpy.ndarray, float :param ts: Surface temperature measured at meteostation at approx. 2 m.
:param U: Wind speed measured at meteostation
:type U: numpy.ndarray, float :param Rh: Relative humidity (%) :type Rh: numpy.ndarray, float :param DMT: Digital model of terrain or altitude (m a.s.l.) :type DMT: numpy.ndarray, float :param veg_type: Type of vegetation - “short” or “tall” :type veg_type: str :param cp: Thermal heat capacity of dry air
:type cp: float
Returns: Latent heat flux for reference evapotranspiration. Return type: numpy.ndarray, float References
Allen, R. et al., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. United Nations Food and Agriculture Organization, Irrigation and Drainage Paper 56, Rome, Italy. 300 pp. *ASCE-ET 2000: ASCE’s Standardized Reference Evapotranspiration Equation. National Irrigation Symposium in Phoenix, Arizona, US.
- Rn (numpy.ndarray, float) – Rn: Total net radiation
-
gamma_x
(rcp, ra, gamma)[source]¶ Psychrometric constant corrected on the rcp and ra according to Jackson et al. (1981, 1988).
Parameters: - rcp (numpy.ndarray) – Surface resistance for water vapour transfer for potential evapotranspiration
.
- ra (numpy.ndarray) – Aerodynamic resistance
- gamma (numpy.ndarray) – Psychrometric constant
.
Returns: Psychrometric constant corrected on the rcp and ra according to Jackson et al. (1981, 1988)
..
Return type: numpy.ndarray
- rcp (numpy.ndarray) – Surface resistance for water vapour transfer for potential evapotranspiration
-
gradEF
(ts, ta, mask=None)[source]¶ Evaporative fraction calculated from gradient method according to Suleiman and Crago (2004).
Parameters: - ts (numpy.ndarray) – Surface temperature
- ta (numpy.ndarray, float) – Air temperature
- mask – Mask of the area of interest. Number of rows and columns
should be the same. Format (1, 0) or (1, nan). :type mask: numpy.ndarray
Returns: Evaporative fraction (rel.) Return type: numpy.ndarray - ts (numpy.ndarray) – Surface temperature
-
gradH
(LE, Rn, G)[source]¶ Sensible heat flux
calculated using gradient method.
Parameters: - LE (numpy.ndarray) – Latent heat flux
- Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
Returns: Sensible heat flux
Return type: numpy.ndarray
- LE (numpy.ndarray) – Latent heat flux
-
gradLE
(EF, Rn, G)[source]¶ Latent heat flux calculated using gradient method
.
Parameters: - EF – Evaporative fraction (rel.)
- Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
Returns: Latent heat flux
Return type: numpy.ndarray
-
groundFlux
(ndvi, Rn, ts, albedo)[source]¶ Ground heat flux according to Bastiaanssen et al. (1998)
Parameters: - ndvi (numpy.ndarray) – NDVI spectral vegetation index (unitless)
- Rn (numpy.ndarray) – Total net radiation
- ts (numpy.ndarray) – Surface temperature
- albedo (numpy.ndarray) – Albedo (rel.)
Returns: Ground heat flux
Return type: numpy.ndarray
-
heatFluxes
(Rn, G, ts, ta, method='aero', Uz=None, h_eff=None, LAI=None, z0m=None, z0h=None, rho=None, disp=None, mask=None, air_pressure=101.3, Z=200.0, cp=1012, L=-10000.0, n_iter=10, a=1.0, b=0.667, c=5.0, d=0.35, kappa=0.41, gravit=9.81)[source]¶ Function provides a calculation for heat fluxes, aerodynimc resistance of surface and friction velocity for three different methods: 1. “aero” - Aerodynamic method based on Monin-Obukhov theory 2. “sebal” - Method based on SEBAL approach provided by
Bastiaanssen et al.
param disp: param Rn: Total net radiation
type Rn: numpy.ndarray
param G: Ground heat flux
type G: numpy.ndarray
param ts: Surface temperature
type ts: numpy.ndarray
param ta: Air temperature
type ta: numpy.ndarray, float
param method: Method of heat fluxes calculation:
- aero - Aerodynamic method based on calculation
of ra using approach proposed by Thom (1975)
- SEBAL - SEBAL method proposed by Bastiaanssen et al. (1998)
- grad - Gradient method proposed by Suleiman and Crago (2004)
type method: str
param Uz: Wind speed measured on meteostation at level Z_st
.
type Uz: float, numpy.ndarray
param h_eff: Effective height of vegetation cover
type h_eff: numpy.ndarray, float
param LAI: Leaf area index
param z0m: Aerodynamic roughness of the surface for momentum
transfer (m) :type z0m: numpy.ndarray :param z0h: Aerodynamic roughness of the surface for heat transfer (m) :type z0h: numpy.ndarray :param rho: Volumetric dry air density
:type rho: numpy.ndarray, float :param disp: Zero plane displacement (m) :type disp: numpy.ndarray, float :param mask: Mask of the area of interest. Number of rows and columns should be the same. Format (1, 0) or (1, nan). :type mask: numpy.ndarray :param air_pressure: Air pressure at level Z (kPa) :type air_pressure: float, numpy.ndarray :param Z: Blending height (m) :type Z: float :param cp: Thermal heat capacity of dry air
:type cp: float :param L: Initial Monin-Obukhov lenght (m). :type L: float :param n_iter: Number of iteration in stability coefficient calculation. :type n_iter: int :param a: Constant for stability parameters calculation (Beljaars and Holtslag, 1991) :type a: float :param b: Constant for stability parameters calculation (Beljaars and Holtslag, 1991) :type b: float :param c: Constant for stability parameters calculation (Beljaars and Holtslag, 1991) :type c: float :param d: Constant for stability parameters calculation (Beljaars and Holtslag, 1991) :type d: float :param kappa: von Karman constant. Default 0.41 :type kappa: float :param gravit: Gravitation forcing (m/s2). Default 9.81 :type gravit: float
returns: Sensible heat flux rtype: numpy.ndarray returns: Latent heat flux rtype: numpy.ndarray returns: Evaporative fraction (rel.) rtype: numpy.ndarray returns: Latent heat flux for equilibrium evaporation :math:`(W.m^{ -2})` :rtype: numpy.ndarray :returns: Latent heat flux for Priestley-Taylor evaporation
:rtype: numpy.ndarray :returns: Aerodynamic resistance for heat and momentum transfer
:rtype: numpy.ndarray :returns: Friction velocity
References
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land ( SEBAL). 1. Formulation. Journal of Hydrology 212–213, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4
Beljaars, A.C.M., Holtslag, A.A.M., 1991. Flux Parametrization over Land Surfaces for Atmospheric Models. Journal of Applied Meteorology 30, 327–341. https://doi.org/10.1175/1520-0450( 1991)030<0327:FPOLSF>2.0.CO;2
Suleiman, A., Crago, R., 2004. Hourly and Daytime Evapotranspiration from Grassland Using Radiometric Surface Temperatures. Agronomy Journal 96, 384–390. https://doi.org/10.2134/agronj2004.3840
Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities, in: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, Vol. 1 Principles. Academic Press, London, pp. 57–110.
-
intensityE
(LE, latent)[source]¶ Evaporation intensity in
.
Parameters: - LE (numpy.ndarray) – Latent heat flux
- latent (numpy.ndarray) – Latent heat of water evaporation
.
Returns: Intensity of water evaporation
.
Return type: numpy.ndarray
- LE (numpy.ndarray) – Latent heat flux
-
omega
(LE, LE_p)[source]¶ Omega factor (Decoupling coefficient) according to Jarvis and McNaughton (1985)
Parameters: - LE (numpy.ndarray) – Latent heat flux
- LE_p (numpy.ndarray) – Potential evaporation latent heat flux
Returns: Omega factor (unitless)
Return type: numpy.ndarray
References:
Jarvis, P., McNaughton, K., 1986. Stomatal Control of Transpiration: Scaling Up from Leaf to Region, in: Advances in Ecological Research. Elsevier, pp. 1–49.
- LE (numpy.ndarray) – Latent heat flux
-
rcp
(E_Z_sat, e_Z, rho, LE_p, ra, gamma, cp=1012.0)[source]¶ Surface resistance for water vapour transfer for potential evapotranspiration
.
Parameters: - E_Z_sat (numpy.ndarray) – Saturated water vapour pressure (kPa).
- e_Z (numpy.ndarray) – Water vapour pressure (kPa).
- rho (numpy.ndarray) – Specific air density
- LE_p (numpy.ndarray) – Potential evaporation latent heat flux
- ra (numpy.ndarray) – Aerodynamic resistance
- gamma (numpy.ndarray) – Psychrometric constant
.
- cp (float) – Thermal heat capacity of dry air
Returns: Surface resistance for water vapour transfer for potential evapotranspiration
.
Return type: numpy.ndarray
-
rs
(delta, gamma, omega, ra)[source]¶ Surface resistance for water vapour transfer
Parameters: - delta (numpy.ndarray) – Delta function
- gamma (numpy.ndarray) – Psychrometric constant
.
- omega (numpy.ndarray) – Decoupling coefficient (rel.)
- ra (numpy.ndarray) – Aerodynamic resistance
Returns: Surface resistance for water vapour transfer
Return type: numpy.ndarray
- delta (numpy.ndarray) – Delta function
-
-
class
SEBCS_lib.
MeteoFeatures
[source]¶ Calculation of basic meteorological features and miscellaneous variables.
-
airDensity
(ta)[source]¶ Volumetric dry air density
.
Parameters: ta (numpy.ndarray, float) – Air temperature Returns: Volumetric dry air density Return type: numpy.ndarray, float
-
airPress
(ta, DMT, Z=200.0, P0=101.325, adiabatic=0.0065)[source]¶ Atmospheric air pressure at level Z (kPa)
Parameters: - ta (numpy.ndarray, float) – Air temperature
- DMT (numpy.ndarray, float) – Digital elevation model or altitude (m)
- Z (float) – Height of measurement above surface (m)
- P0 (float) – Sea level air pressure (kPa)
- adiabatic (float) – Adiabatic lapse rate
Returns: Air pressure at level Z (kPa)
Return type: numpy.ndarray, float
- ta (numpy.ndarray, float) – Air temperature
-
airTemp
(ta_st, st_altitude, DMT, adiabatic=0.0065)[source]¶ Conversion of air temperature calculated from temperature data and digital elevation model
to spatial near to ground temperature or temperature at different altitude.
Parameters: ta_st – Air temperature measured on meteostation :math:`(SI{ }degreeCelsius)` :type ta_st: float :param st_altitude: Meteostation altitude (m a.s.l.) :type st_altitude: float :param DMT: Digital elevation model (m) or altitude for calculation of ta value. :type DMT: numpy.ndarray, float :param adiabatic: Adiabatic lapse rate
. Default = 0.0065
:type adiabatic: float :return: Spatial air temperature
:rtype: numpy.ndarray, float
-
airTemperatureBlending
(ta_surface, Z=200.0, Z_st=2.0, adiabatic=0.0065)[source]¶ Conversion of spatial air temperature measured for near surface level to level Z above the surface. This approach is usually used for calculation of air temperature at blending height (mixing layer).
Parameters: ta_surface – Spatial air temperature for near ground level ( Z_st;
:type ta_surface: :param Z: Height of a level which is used for calculation. Default value corresponds with “blending” height or height of mixing layer. Default is 200 m above surface. :type Z: float :param Z_st: Height of air temperature measurement (m) :type Z_st: float :param adiabatic: Adiabatic lapse rate
. Default = 0.0065
:type adiabatic: float :return:
-
delta
(ts, ta)[source]¶ Slope of water vapour pressure gradient to temperature gradient - delta function
. Calculation according to Jackson et al. (1998).
Parameters: - ts (numpy.ndarray) – Surface temperature
- ta (numpy.ndarray, float) – Air temperature
Returns: Slope of water vapour pressure gradient to temperature gradient - delta function
Return type: numpy.ndarray
- ts (numpy.ndarray) – Surface temperature
-
emissivity
(red, ndvi)[source]¶ Surface emissivity calculated according to Sobrino et al. (2004) NDVI Treshold Method.
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- ndvi (numpy.ndarray) – Spectral vegetation index NDVI (unitless)
Returns: Surface emissivity (rel.)
Return type: numpy.ndarray
-
gamma
(airP, latent, cp=1012.0)[source]¶ Psychrometric constant
.
Parameters: - airP (numpy.ndarray, float) – Atmospheric pressure (kPa)
- latent – Latent heat for water vapour exchange
- cp (float) – Thermal heat capacity of dry air
Returns: Psychrometric constant
Return type: numpy.ndarray, float
-
latent
(ta)[source]¶ Latent heat for the water vapour exchange
.
Parameters: ta (numpy.ndarray, float) – Air temperature Returns: Latent heat for the water vapour exchange Return type: numpy.ndarray, float
-
satVapourPress
(ta)[source]¶ Saturated water vapour pressure (kPa) calculated using Magnus-Tetens equation.
Parameters: ta (numpy.ndarray, float) – Air temperature Returns: Saturated water vapour pressure (kPa) Return type: numpy.ndarray, float
-
surfaceTemperature
(tir_band, emissivity=1.0, emis_rule='No')[source]¶ Correction of surface temperature on emissivity. :param tir_band: Layer of surface temperature
. :type tir_band: numpy.ndarray :param emissivity: Layer of emissivity (rel.). :type emissivity: numpy.ndarray :param emis_rule: Setting if the correction will be done or not.No is default.Returns: Layer of corrected surface temperature :math:`(SI{ }degreeCelsius)`. :rtype: numpy.ndarray
-
-
class
SEBCS_lib.
SolarRadBalance
[source]¶ Class contains functions for calculation of solar radiation balance and topographic features: incident radiation in dependence on surface geometry, slope of terrain, aspect of terrain, albedo, longwave radiation fluxes and atmospheric emissivity, shortwave radiation reflectance and total net radiation
-
albedo
(band_red, band_nir, sat_type='L8', band_blue=None, band_green=None, band_sw1=None, band_sw2=None)[source]¶ Calculation of Albedo according to data type (satellite data type) or data availability. Albedo can be calculated using Landsat data or using any data including RED and NIR band. For the Landsat 8 data Olmedo method is used, for tle Landsat 4, 5 and 7 Tasumi approach is used. If only RED and NIR bands are available, Brom method is used.
Parameters: - band_red (numpy.ndarray) – Red band (rel.)
- band_nir (numpy.ndarray) – NIR band (rel.)
- sat_type (str) –
Type of Landsat satellite:
- L5 - Landsat 4 TM, 5 TM or Landsat 7 ETM+
- L8 - Landsat 8 OLI/TIRS
- band_blue (numpy.ndarray) – Blue band (rel.)
- band_green (numpy.ndarray) – Green band (rel.)
- band_sw1 (numpy.ndarray) – SWIR1 band on ca 1.61
(rel.)
- band_sw2 (numpy.ndarray) – SWIR2 band on ca 2.2
(rel.)
Returns: Albedo (rel.)
Return type: numpy.ndarray
References:
G.F. Olmedo, S. Ortega-Farias, D. Fonseca-Luengo, D. de la Fuente-Saiz, F.F. Peñailillo 2018: Water: actual evapotranspiration with energy balance models. R Package Version 0.6 (2017)
Tasumi, M., Allen, R.G., Trezza, R., 2008. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. Journal of Hydrologic Engineering 13, 51–63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51).
Duffková, R., Brom, J., Žížala, D., Zemek, F., Procházka, J., Nováková, E., Zajíček, A., Kvítek, T., 2012. Určení infiltračních oblastí pomocí vodního stresu vegetace na základě dálkového průzkumu Země a pozemních měření. Certifikovaná metodika. VÚMOP, v.v.i., Praha.
-
albedoBrom
(ndvi, msavi, c_a=0.08611, c_b=0.894716, c_c=5.558657, c_d=-0.11829, c_e=-1.9818, c_f=-4.50339, c_g=-11.4625, c_h=7.461454, c_i=5.299396, c_j=4.76657, c_k=-2.3127, c_l=-3.42739)[source]¶ Albedo (rel.) calculated according to Duffková and Brom et al. (2012)
Parameters: - ndvi (numpy.array) – Normalized Difference Vegetation Index (-)
- msavi – Modified Soil Adjusted Vegetation Index (-) according to Gao et al. 1996.
- c_a (float) – constant. Default a = 0.08611
- c_b (float) – constant. Default a = 0.894716
- c_c (float) – constant. Default a = 5.558657
- c_d (float) – constant. Default a = -0.11829
- c_e (float) – constant. Default a = -1.9818
- c_f (float) – constant. Default a = -4.50339
- c_g (float) – constant. Default a = -11.4625
- c_h (float) – constant. Default a = 7.461454
- c_i (float) – constant. Default a = 5.299396
- c_j (float) – constant. Default a = 4.76657
- c_k (float) – constant. Default a = -2.3127
- c_l (float) – constant. Default a = -3.42739
Returns: Albedo (rel.)
Return type: numpy.ndarray
References:
Duffková, R., Brom, J., Žížala, D., Zemek, F., Procházka, J., Nováková, E., Zajíček, A., Kvítek, T., 2012. Určení infiltračních oblastí pomocí vodního stresu vegetace na základě dálkového průzkumu Země a pozemních měření. Certifikovaná metodika. VÚMOP, v.v.i., Praha.
-
albedoLandsat
(blue, green, red, nir, swir1, swir2, sat_type='L8')[source]¶ Albedo (rel.) calculated for Landsat satellite sensors. Albedo for Landsat 4 TM, 5 TM and Landsat 7 ETM+ is calculated according to Tasumi et al. (2008). Albedo for Landsat 8 OLI/TIRS is calculated according to Olmeo et al. (2017). Albedo is computed with spectral reflectance bands on relative scale (0 to 1).
Note: This algorithm might be used with another data from different devices, however a comparable spectral data (bands) should be used.
Parameters: - blue (numpy.ndarray) – Blue band (rel.)
- green (numpy.ndarray) – Green band (rel.)
- red (numpy.ndarray) – Red band (rel.)
- nir (numpy.ndarray) – NIR band (rel.)
- swir1 (numpy.ndarray) – SWIR1 band on ca 1.61
(rel.)
- swir2 (numpy.ndarray) – SWIR2 band on ca 2.2
(rel.)
- sat_type (str) –
Type of Landsat satellite:
- L5 - Landsat 4 TM, 5 TM or Landsat 7 ETM+
- L8 - Landsat 8 OLI/TIRS
Returns: Albedo (rel.)
Return type: numpy.ndarray
References:
G.F. Olmedo, S. Ortega-Farias, D. Fonseca-Luengo, D. de la Fuente-Saiz, F.F. Peñailillo 2018: Water: actual evapotranspiration with energy balance models. R Package Version 0.6 (2017)
Tasumi, M., Allen, R.G., Trezza, R., 2008. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. Journal of Hydrologic Engineering 13, 51–63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51).
-
atmEmissivity
(e_Z, ta)[source]¶ Atmospheric emissivity calculated according to Idso (see Brutsaert 1982).
Parameters: - e_Z (numpy.ndarray, float) – Atmospheric water vapour pressure (kPa)
- ta (numpy.ndarray, float) – Air temperature
Returns: Air emissivity (rel.)
Return type: numpy.ndarray, float
-
downRL
(ta, emis_a)[source]¶ Funtion calculates downward flux of longwave radiation
Parameters: - ta (numpy.ndarray, float) – Air temperature
- emis_a (numpy.ndarray, float) – Air emissivity (rel.)
Return RL_in: Downward flux of longwave radiation
Rtype RL_in: numpy.ndarray, float
- ta (numpy.ndarray, float) – Air temperature
-
netRad
(Rs_in_corr, Rs_out, RL_in, RL_out)[source]¶ Total net radiation.
Parameters: - Rs_in_corr (numpy.ndarray) – Incomming global (shortwave) radiation
- Rs_out (numpy.ndarray) – Outgoing (reflected) shortwave radiation
- RL_in (numpy.ndarray) – Incomming (downward) longwave radiation
- RL_out (numpy.ndarray) – Outgoing (upward) longwave radiation
Returns: Total net radiation flux
Return type: numpy.ndarray
- Rs_in_corr (numpy.ndarray) – Incomming global (shortwave) radiation
-
outRL
(ts, emiss)[source]¶ Upward flux of longwave radiation
Parameters: - ts (numpy.ndarray) – Surface temperature
- emiss (numpy.ndarray) – Surface emissivity (rel.)
Returns: Upward flux of longwave radiation
Return type: numpy.ndarray
- ts (numpy.ndarray) – Surface temperature
-
reflectRs
(Rs_in_corr, albedo)[source]¶ Amount of shortwave radiation reflected from surface
Parameters: - Rs_in_corr (numpy.ndarray) – Incomming global radiation corrected on DEM
- albedo (numpy.ndarray) – Surface albedo (rel.)
Returns: Amount of reflected global radiation
Return type: numpy.ndarray
- Rs_in_corr (numpy.ndarray) – Incomming global radiation corrected on DEM
-
slopeAspect
(DMT, x_size, y_size)[source]¶ Slope and aspect of terrain (DMT) in degrees.
Parameters: - DMT (numpy.ndarray) – Digital model of terrain (m a.s.l.)
- x_size (float) – Size of pixel in x axis (m)
- y_size (float) – Size of pixel in y axis (m)
Returns: Slope of the terrain
Return type: numpy.ndarray
Returns: Aspect of the terrain
Return type: numpy.ndarray
-
solarInTopo
(Rs_in, slope, aspect, latitude, longitude, date_acq, time_acq)[source]¶ Calculation of incident shortwave solar radiation flux according to the solar geometry, position (latitude and longitude) and shape of surface (slope and orientation). Flux of the solar energy
is calculated on basis of the measured global radiation using pyranometer (incomming global radiation). Diffuse part of radiation is not separated in calculation.
Parameters: - Rs_in (float) – Global radiation measured by pyranometer
.
- slope (numpy.ndarray) – Slope of the terrain
.
- aspect (numpy.ndarray) – Orientation of the terrain
.
- latitude (float) – Mean latitude of the data in decimal degrees
- longitude (float) – Mean longitude of the data in decimal degrees
- date_acq (datetime.date) – Date of data acquisition in iso format (‘YYYY-mm-dd’)
- time_acq (datetime.time) – Time in GMT in datetime.time format (‘HH:MM:SS.SS’)
Returns: Incident shortwave radiation
corrected on the terrain and solar geometry.
Return type: numpy.ndarray
- Rs_in (float) – Global radiation measured by pyranometer
-
-
class
SEBCS_lib.
VegIndices
[source]¶ Calculation of vegetation indices from spectral data.
-
LAI
(red, nir, method=3)[source]¶ Leaf Area Index (LAI) calculated according to several methods.
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
- method (int) –
Method of LAI calculation:
- 1: Pôças
- 2: Bastiaanssen
- 3: Jafaar (default)
- 4: Anderson
- 5: vineyard
- 6: Carrasco
- 7: Turner
Returns: Leaf Area Index (LAI)
Return type: numpy.ndarray
References
Anderson, M., Neale, C., Li, F., Norman, J., Kustas, W., Jayanthi, H., Chavez, J., 2004. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sensing of Environment 92, 447–464. https://doi.org/10.1016/j.rse.2004.03.019
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land ( SEBAL). 1. Formulation. Journal of Hydrology 212–213, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4
Carrasco-Benavides, M., Ortega-Farías, S., Lagos, L., Kleissl, J., Morales-Salinas, L., Kilic, A., 2014. Parameterization of the Satellite-Based Model (METRIC) for the Estimation of Instantaneous Surface Energy Balance Components over a Drip-Irrigated Vineyard. Remote Sensing 6, 11342–11371. https://doi.org/10.3390/rs61111342
Jaafar, H.H., Ahmad, F.A., 2019. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sensing of Environment S0034425718305947. https://doi.org/10.1016/j.rse.2018.12.033
Pôças, I., Paço, T.A., Cunha, M., Andrade, J.A., Silvestre, J., Sousa, A., Santos, F.L., Pereira, L.S., Allen, R.G., 2014. Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms. Biosystems Engineering 128, 69–81. https://doi.org/10.1016/j.biosystemseng.2014.06.019
Turner, D.P., Cohen, W.B., Kennedy, R.E., Fassnacht, K.S., Briggs, J.M., 1999. Relationships between Leaf Area Index and Landsat TM Spectral Vegetation Indices across Three Temperate Zone Sites. Remote Sensing of Environment 70, 52–68. https://doi.org/10.1016/S0034-4257(99)00057-7
-
biomass_sat
(ndvi)[source]¶ Calculation of amount of fresh biomass from satellite data. NDVI is used for estimation
Parameters: ndvi – Normalized Difference Vegetation Index (NDVI). Returns: Amount of fresh biomass
-
fractVegCover
(ndvi)[source]¶ Fractional vegetation cover layer - Fc.
Parameters: ndvi (numpy.ndarray) – Normalized Difference Vegetation Index - NDVI (unitless) Returns: Fractional vegetation cover layer - Fc (unitless) Return type: numpy.ndarray
-
vegHeight
(h_min, h_max, msavi)[source]¶ Height of effective vegetation cover (m) derived from MSAVI index according to Gao et al. (2011).
Parameters: - h_min (numpy.ndarray) – Maximal height of vegetation cover (m)
- h_max (numpy.ndarray) – Minimal height of vegetation cover (m)
- msavi (numpy.ndarray) – Modified Soil Adjusted Vegetation Index (MSAVI)
Returns: Effective vegetation cover height (m)
Return type: numpy.ndarray
References
Gao, Z.Q., Liu, C.S., Gao, W., Chang, N.-B., 2011. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. Hydrol. Earth Syst. Sci. 15, 119–139. https://doi.org/10.5194/hess-15-119-2011
-
viMSAVI
(red, nir)[source]¶ Modified Soil Adjusted Vegetation Index - MSAVI (Qi et al. 1994).
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
Returns: Modified Soil Adjusted Vegetation Index - SAVI (unitless)
Return type: numpy.ndarray
References
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48, 119–126. https://doi.org/10.1016/0034-4257(94)90134-1
-
viNDMI
(nir, swir1)[source]¶ Normalized Vegetation Moisture Index - NDMI.
Parameters: - nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
- swir1 – Spectral reflectance in SWIR region (approx. 1.61
(rel.)
Returns: Normalized Vegetation Moisture Index - NDMI (unitless)
Return type: numpy.ndarray
-
viNDVI
(red, nir)[source]¶ Normalized Difference Vegetation Index - NDVI.
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
Returns: Normalized Difference Vegetation Index - NDVI (unitless)
Return type: numpy.ndarray
-
viOSAVI
(red, nir, L=0.16)[source]¶ Optimized Soil Adjusted Vegetation Index - OSAVI (Rondeaux et al. ( 1996)).
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
- L (float) – Parameter L. Default L=0.5
Returns: Soil Adjusted Vegetation Index - OSAVI (unitless)
Return type: numpy.ndarray
References
Rondeaux G., Steven M., Baret F. (1996): Optimisation of soil-adjusted vegetation indices Remote Sensing of Environment, 55 (1996), pp. 95-107
-
viRDVI
(red, nir)[source]¶ Renormalized Difference Vegetation Index - RDVI (Roujean and Breon, 1995).
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
Returns: RDVI
Return type: numpy.ndarray
References
Roujean, J.-L., Breon, F.-M., 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment 51, 375–384. https://doi.org/10.1016/0034-4257(94)00114-3
-
viSAVI
(red, nir, L=0.5)[source]¶ Soil Adjusted Vegetation Index - SAVI (Huete, 1988).
Parameters: - red (numpy.ndarray) – Spectral reflectance in RED region (rel.)
- nir (numpy.ndarray) – Spectral reflectance in NIR region (rel.)
- L (float) – Parameter L. Default L=0.5
Returns: Soil Adjusted Vegetation Index - SAVI (unitless)
Return type: numpy.ndarray
References
Huete A.R. (1988): A soil-adjusted vegetation index (SAVI) Remote Sensing of Environment 27, 47-57.
-
-
class
SEBCS_lib.
WindStability
[source]¶ Atmospheric stability calculation. Class includes methods for calculation of boundary layer stability, friction velocity and aerodynamic resistance of the surface. Methods for calculation of stability parameters for both aerodynamic and gradient methods are included. Methods for SEBAL procedure are also used. Some another features are included.
-
aeroSEBAL
(Uz, ta, ts, z0m, Rn, G, rho, niter=10, Z=200, z1=0.1, z2=2, cp=1012.0, kappa=0.41, mask=None)[source]¶ Calculation of sensible heat flux and surface aerodynamic resistance according to Bastiaanssen et al. (1998).
Parameters: - Uz (numpy.ndarray) – Wind speed at level Z
- ta (numpy.ndarray) – Air temperature at blending height
- ts (numpy.ndarray) – Surface temperature
- z0m (numpy.ndarray) – Surface roughness for momentum transfer (m)
- Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- rho (numpy.ndarray) – Specific air density
- niter (int) – Number of iteration
- Z (float (Numpy array)) – Blending height (mixing layer height) (m). Default 200 m.
- z1 (float) – First height above zero plane displacement (m)
- z2 (float) – Second height above zero plane displacement (m)
- cp (float) – Thermal heat capacity of dry air
- kappa (float) – von Karman constant. Default 0.41
- mask – Mask of the area of interest. Number of rows and columns
should be the same. Format (1, 0) or (1, nan). :type mask: numpy.ndarray
Returns: Aerodynamic resistance for heat transfer calculated according to SEBAL (Bastiaanssen et al. 1998)
Return type: numpy.ndarray Returns: Sensible heat flux calculated according to SEBAL (Bastiaanssen et al. 1998)
Return type: numpy.ndarray - Uz (numpy.ndarray) – Wind speed at level Z
-
static
coefX
(Z, L)[source]¶ X coefficient for atmospheric stability calculation.
Parameters: - Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- L (numpy.ndarray) – Monin-Obukhov length (m)
Returns: X coefficient for atmospheric stability calculation
Return type: numpy.ndarray
-
static
coef_a
(t_wet, cb)[source]¶ Coefficient a calculated from temperature gradient.
Parameters: - t_wet (numpy.ndarray) – Temperature for wet surface
- cb (numpy.ndarray) – Coefficient b calculated from temperature gradient
Returns: Coefficient a calculated from temperature gradient
Return type: numpy.ndarray
- t_wet (numpy.ndarray) – Temperature for wet surface
-
static
coef_b
(t_dry, t_wet, t_max, ta)[source]¶ Coefficient b calculated from temperature gradient.
Parameters: - t_dry (float, numpy.ndarray) – Temperature for dry surface derived from the surface temperature layer
- t_wet (float, numpy.ndarray) – Temperature for wet surface derived from the surface temperature layer
- t_max (numpy.ndarray) – Maximal surface temperature calculated from energy balance
- ta (numpy.ndarray) – Air temperature at level Z
Returns: Coefficient a calculated from temperature gradient
Return type: numpy.ndarray
- t_dry (float, numpy.ndarray) – Temperature for dry surface derived from the surface temperature layer
-
dT
(ts, ta, Rn, G, ra, rho, cp=1012.0, mask=None)[source]¶ Temperature gradient calculated according to SEBAL (Bastiaanssen et al. 1998).
Parameters: - ts (numpy.ndarray) – Surface temperature
- ta (numpy.ndarray) – Air temperature at level Z
- Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- ra (numpy.ndarray) – Aerodynamic resistance
- rho (numpy.ndarray) – Specific air density
- cp (float) – Thermal heat capacity of dry air
- mask – Mask of the area of interest. Number of rows and columns
should be the same. Format (1, 0) or (1, nan). :type mask: numpy.ndarray :return: Temperature difference dT calculated according to Bastiaanssen (1998) :rtype: numpy.ndarray
- ts (numpy.ndarray) – Surface temperature
-
static
dryT
(ts, mask=None)[source]¶ Extraction of temperature for dry surface with no evaporation.
Parameters: - ts (numpy.ndarray) – Surface temperature
- mask – Mask of the area of interest. Number of rows and columns
should be the same. Format (1, 0) or (1, nan). :type mask: numpy.ndarray
Returns: Temperature of dry surface derived from surface temperature layer. Return type: float - ts (numpy.ndarray) – Surface temperature
-
static
frictVelo
(Uz, z0m, disp=0.0, Z=200.0, psi_m=0, kappa=0.41)[source]¶ Friction velocity of wind speed
corrected on atmospheric stability.
Parameters: - disp (numpy.ndarray, float) –
- Uz (numpy.ndarray) – Wind speed at Z level
- z0m (numpy.ndarray, float) – Surface roughness for momentum transfer (m)
- disp – Zero plane displacement (m)
- Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- psi_m (numpy.ndarray) – Stability parameter for momentum transfer. Defaul 0.
- kappa (float) – von Karman constant. Default 0.41
Returns: Friction velocity
Return type: numpy.ndarray
-
static
lengthMO
(frict, ts, flux_H=None, rho=None, t_virt=None, cp=1012, kappa=0.41, gravit=9.81)[source]¶ Monin-Obukhov length (m)
Parameters: - frict (numpy.ndarray) – Friction velocity
- ts (numpy.ndarray) – Surface temperature (C degree)
- flux_H (numpy.ndarray) – Sensible heat flux (W.m2)
- rho (numpy.ndarray) – Specific air density
- t_virt (numpy.ndarray) – Virtual temperature
- cp (float) – Thermal heat capacity of dry air
- kappa (float) – von Karman constant. Default 0.41
- gravit (float) – Gravitation forcing (m/s2). Default 9.81
Returns: Monin-Obukhov length (m)
Return type: numpy.ndarray
- frict (numpy.ndarray) – Friction velocity
-
static
maxT
(Rn, G, ra, ta, rho, cp=1012.0)[source]¶ Maximal surface temperature calculated on physical basis (K).
Parameters: - Rn (numpy.ndarray) – Total net radiation
- G (numpy.ndarray) – Ground heat flux
- ra (numpy.ndarray) – Aerodynamic resistance for heat transfer
- ta (numpy.ndarray) – Air temperature at level Z
- rho (numpy.ndarray) – Specific air density
- cp (float) – Thermal heat capacity of dry air
Returns: Maximal surface temperature calculated from energy balance equation
Return type: numpy.ndarray
- Rn (numpy.ndarray) – Total net radiation
-
static
psiH
(L, X, Z=200, a=1.0, b=0.667, c=5.0, d=0.35)[source]¶ Calculation of stability parameter for heat transfer (-) according to Beljaars et Holstag (1991) for stable conditions and Liu et al. (2007) for unstable and neutral conditions.
Parameters: - L (numpy.ndarray) – Monin-Obukhov length (m)
- X (numpy.ndarray) – X coefficient for stability calculation
- Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- a (float) – Coefficient. Default a = 1.0
- b (float) – Coefficient. Default b = 0.667
- c (float) – Coefficient. Defalt c = 5.0
- d (float) – Coefficient. Default d = 0.35
Returns: Stability parameter for momentum transfer (-)
Return type: numpy.ndarray
-
static
psiM
(L, X, Z=200, a=1.0, b=0.667, c=5.0, d=0.35)[source]¶ Calculation of stability parameter for momentum transfer (-) according to Beljaars et Holstag (1991) for stable conditions and Liu et al. (2007) for unstable and neutral conditions.
Parameters: - L (numpy.ndarray) – Monin-Obukhov length (m)
- X (numpy.ndarray) – X coefficient for stability calculation
- Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- a (float) – Coefficient. Default a = 1.0
- b (float) – Coefficient. Default b = 0.667
- c (float) – Coefficient. Defalt c = 5.0
- d (float) – Coefficient. Default d = 0.35
Returns: Stability parameter for momentum transfer (-)
Return type: numpy.ndarray
-
static
raGrad
(flux_H, rho, ts, ta, cp=1012)[source]¶ Aerodynamic resistance for heat and momentum transfer (s.m^{-1}) calculated from conversion of sensible heat flux equation.
Parameters: - flux_H (numpy.ndarray) – Sensible heat flux
- rho (numpy.ndarray) – Specific air density
- ts – Surface temperature
- ta (numpy.ndarray) – Air temperature at level Z
- cp (float) – Thermal heat capacity of dry air
Returns: Aerodynamic resistance for gradient model
Return type: numpy.ndarray
- flux_H (numpy.ndarray) – Sensible heat flux
-
static
raSEBAL
(frict, psiH_z1, psiH_z2, z1=0.1, z2=2.0, kappa=0.41)[source]¶ Calculation of surface aerodynamic resistance for heat transfer based on SEBAL approach (Bastiaanssen, 1998).
Parameters: - frict (numpy.ndarray) – Friction velocity
- psiH_z1 (numpy.ndarray) – Stability parameter for momentum transfer (-) at level z1
- psiH_z2 (numpy.ndarray) – Stability parameter for momentum transfer (-) at level z2
- z1 (float) – First height above zero plane displacement (m)
- z2 (float) – Second height above zero plane displacement (m)
- kappa (float) – von Karman constant. Default 0.41
Returns: Aerodynamic resistance for heat transfer based on SEBAL approach (Bastiaanssen, 1998).
Return type: numpy.ndarray
- frict (numpy.ndarray) – Friction velocity
-
static
raThom
(Uz, z0m, z0h, disp=0.0, psi_m=0.0, psi_h=0.0, Z=200.0, kappa=0.41)[source]¶ Aerodynamic resistance for heat and momentum transfer (s.m-1) calculated according to Thom (1975).
Parameters: - disp (numpy.ndarray, float) –
- Uz (numpy.ndarray) – Wind speed at level Z
- z0m (numpy.ndarray) – Surface roughness for momentum transfer (m)
- z0h (numpy.ndarray) – Surface roughness for heat transfer (m)
- disp – Zero plane displacement (m)
- psi_m (numpy.ndarray) – Stability parameter for momentum transfer (-). Default is 0.
- psi_h (numpy.ndarray) – Stability parameter for heat transfer (-) Default is 0.
- Z (float (Numpy array)) – Blending height (mixing layer height) (m). Default 200 m.
- kappa (float) – von Karman constant. Default 0.41
Return ra: Aerodynamic resistance for heat and momentum transfer (s.m-1) calculated according to Thom (1975)
Rtype ra: numpy.ndarray
References
Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities, in: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, Vol. 1 Principles. Academic Press, London, pp. 57–110.
-
stabCoef
(Uz, ta, ts, z0m, z0h, disp=0, Z=200, L=-10000.0, n_iter=10, a=1.0, b=0.667, c=5.0, d=0.35, kappa=0.41, gravit=9.81)[source]¶ Stability parameters calculation using iterative procedure described by Itier (1980).
Parameters: - disp (numpy.ndarray, float) –
- Uz (numpy.ndarray) – Wind speed at level Z
- ta (numpy.ndarray) – Air temperature at Z level (K, C degrees)
- ts (numpy.ndarray) – Surface temperature (K, C degrees)
- z0m (numpy.ndarray) – Surface roughness for momentum transfer (m)
- z0h (numpy.ndarray) – Surface roughness for heat transfer (m)
- disp – Zero plane displacement (m)
- Z (float (Numpy array)) – Blending height (mixing layer height) (m). Default 200 m.
- L (float) – Initial value of Monin-Obukhov length (m). Default -10000.0
- n_iter (int) – Number of iteration
- a (float) – Coefficient. Default a = 1.0
- b (float) – Coefficient. Default b = 0.667
- c (float) – Coefficient. Defalt c = 5.0
- d (float) – Coefficient. Default d = 0.35
- kappa (float) – von Karman constant. Default 0.41
- gravit (float) – Gravitation forcing (m/s2). Default 9.81
Returns: Stability parameter for momentum transfer (-)
Return type: numpy.ndarray
Returns: Stability parameter for heat transfer (-)
Return type: numpy.ndarray
Returns: Friction velocity
.
Return type: numpy.ndarray
Returns: Monin-Obukhov length (m)
Return type: numpy.ndarray
-
static
virtTemp
(ta, ts, z0h, disp=0.0, Z=200, psi_h=0, kappa=0.41)[source]¶ Virtual temperature (K) corrected on atmospheric stability.
Parameters: - disp (numpy.ndarray, float) –
- ta (numpy.ndarray) – Air temperature at Z level (K, C degrees)
- ts (numpy.ndarray) – Surface temperature (K, C degrees)
- z0h (numpy.ndarray) – Surface roughness for heat transfer (m)
- disp – Zero plane displacement (m)
- Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- psi_h (numpy.ndarray) – Stability parameter for heat transfer, Default 0.
- kappa (float) – von Karman constant. Default 0.41
Returns: Virtual temperature (K)
Return type: numpy.ndarray
-
static
wetT
(ta)[source]¶ Surface temperature for wet surface. In this case surface temperature for wet surface is equal to air temperature. This statement follows from imagine that the LE = Rn - G and thus H is close to zero.
Parameters: ta (numpy.ndarray) – Air temperature at level Z Returns: Temperature of wet surface. Return type: numpy.ndarray
-
static
windSpeedZ
(U, Z=200.0, Z_st=2.0, h_st=0.12, ws_homog=1)[source]¶ Wind speed recalculated to height Z according to logarithmic law (Gao et al. 2011). The results can contain simple number, homogenous or heterogenous matrix of data (Numpy array).
Parameters: - U (float, numpy.ndarray) – Wind speed measured on meteostation at level Z_st
.
- Z (float) – Blending height (mixing layer height) (m). Default 200 m.
- Z_st (float) – Height of wind speed measurement (m). Default 2 m.
- h_st (float) – Height of vegetation cover under meteostation (m). Default value is 0.12 m which corresponds with reference cover used for meteostations.
- ws_homog – Indicates if the result matrix contains uniform
result (mean value of wind speed for the area) or if the results includes heterogeneity of input data (each pixel is calculated separately). 0 - homogenous, 1 - heterogenous :type ws_homog: int :return: Wind speed at mixing layer
:rtype: float, numpy.ndarray
References
Gao, Z.Q., Liu, C.S., Gao, W., Chang, N.B., 2011. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. Hydrol. Earth Syst. Sci. 15, 119–139. https://doi.org/10.5194/hess-15-119-2011
- U (float, numpy.ndarray) – Wind speed measured on meteostation at level Z_st
-
static
z0h
(z0m)[source]¶ Aerodynamic roughness of the surface for heat transfer (m) calculated according to Thom (1975).
Parameters: z0m (numpy.ndarray, float) – Aerodynamic roughness of the surface for momentum transfer (m) Returns: Aerodynamic roughness of the surface for heat transfer (m) Return type: numpy.ndarray, float References
Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities, in: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, Vol. 1 Principles. Academic Press, London, pp. 57–110.
-
static
z0m
(h_eff, LAI)[source]¶ Aerodynamic roughness of the surface for momentum transfer (m). z0m is calculated according to Tasumi (2003) for vegetation cover lower tha 1 m and according to Thom (1975) for vegetation cover higher than 1 m. The lowest value of z0m is 0.005, which is typical value for agricultural bare soils (Allen et al. 2007)
Parameters: - h_eff (numpy.ndarray) – Effective vegetation cover height (m)
- LAI (numpy.ndarray) – Leaf Area Index
Returns: Aerodynamic roughness of the surface for momentum transfer (m)
Return type: numpy.ndarray
References
Allen, R.G., Tasumi, M., Trezza, R., 2007. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain Eng. 133, 380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
Tasumi, M., 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery (Ph.D. Thesis). University of Idaho, Moscow, Idaho.
Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities, in: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, Vol. 1 Principles. Academic Press, London, pp. 57–110.
-
static
zeroPlaneDis
(h_eff)[source]¶ Zero plane displacement (m) calculated according to Thom (1975).
Parameters: h_eff (numpy.ndarray) – Effective vegetation cover height (m) Returns: Zero plane displacement (m) Return type: numpy.ndarray References
Thom, A.S., 1975. Momentum, mass and heat exchange of plant communities, in: Monteith, J.L. (Ed.), Vegetation and the Atmosphere, Vol. 1 Principles. Academic Press, London, pp. 57–110.
-