QGIS Plugin for Extracted roads evaluation using APLS matrix.
The APLS Plugin for QGIS Software is a tool that can be used to evaluate extracted road networks from satellite imagery. This plugin uses the Average Path Length Similarity (APLS) matrix to compare the extracted road network to a ground truth network. APLS is a measure of the similarity between two networks, based on the average shortest path length between pairs of nodes.
Results example :
Processing total of : 49 images. Apls for Folder : 18178780_15 is 0.9886363636363636 Apls for Folder : 11278840_15 is 0.11675731021559 Apls for Folder : 23278915_15 is 0.3240173376386126 Apls for Folder : 18478900_15 is 0.9666666666666667 ................ Apls for Folder : 24628885_15 is 0.07408254856578367 Apls for Folder : 22228900_15 is 0.4204545454545454 Apls for Folder : 24479215_15 is 0.1971564400253033 AVG APLS is 0.4584244128431006
Example of Folder Structure for the files
The plugin requires QGIS 3.0 or higher to be installed and allows users to input a ground truth folder containing sub-folders, each of which contains a shapefile, and a predicted network folder containing sub-folders, each of which also contains a shapefile. The plugin then calculates the APLS for each sub-folder in the predicted network folder and outputs the results in the Python console./main_folder │ └── test_shp/ │ ├── 10378780_15 │ │ ├── 10378780_15.cpg │ │ ├── 10378780_15.dbf │ │ ├── 10378780_15.prj │ │ ├── 10378780_15.shp │ │ ├── 10378780_15.shx │ ├── 10828720_15 │ │ ├── 10828720_15.cpg │ │ ├── 10828720_15.dbf │ │ ├── 10828720_15.prj │ │ ├── 10828720_15.shp │ │ ├── 10828720_15.shx ----------------------------------- │ └── Predicted_shp/ │ ├── 10378780_15 │ │ ├── 10378780_15.cpg │ │ ├── 10378780_15.dbf │ │ ├── 10378780_15.prj │ │ ├── 10378780_15.shp │ │ ├── 10378780_15.shx │ ├── 10828720_15 │ │ ├── 10828720_15.cpg │ │ ├── 10828720_15.dbf │ │ ├── 10828720_15.prj │ │ ├── 10828720_15.shp │ │ ├── 10828720_15.shxReferences
@inproceedings{van2020road, title={Road network and travel time extraction from multiple look angles with spacenet data}, author={Van Etten, Adam and Shermeyer, Jacob and Hogan, Daniel and Weir, Nicholas and Lewis, Ryan}, booktitle={IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium}, pages={3920--3923}, year={2020}, organization={IEEE} }
Citation
@masterthesis{MohammedThesisRoad, author = {Mohammed Nasser}, title = {Road Identification from Satellite Imagery Using Deep Learning}, school = {Erciyes University}, year = {2022} }