Tool can be used to perform a simple landform classification based on measures of slope gradient and curvature derived from a user-specified digital elevation model (DEM). The classification scheme is based on the method proposed by Pennock, Zebarth, and DeJong (1987). The scheme divides a landscape into seven element types, including: convergent footslopes (CFS), divergent footslopes (DFS), convergent shoulders (CSH), divergent shoulders (DSH), convergent backslopes (CBS), divergent backslopes (DBS), and level terrain (L). The output raster image will record each of these base element types as:

Element Type | Code ------------- | ------- CFS | 1 DFS | 2 CSH | 3 DSH | 4 CBS | 5 DBS | 6 L | 7

The definition of each of the elements, based on the original Pennock et al. (1987) paper, is as follows:

PROFILEGRADIENTPLANElement
Concave ( -0.10)High >3.0Concave 0.0CFS
Concave ( -0.10)High >3.0Convex >0.0DFS
Convex (>0.10)High >3.0Concave 0.0CSH
Convex (>0.10)High >3.0Convex >0.0DSH
Linear (-0.10...0.10)High >3.0Concave 0.0CBS
Linear (-0.10...0.10)High >3.0Convex >0.0DBS

Where PROFILE is profile curvature, GRADIENT is the slope gradient, and PLAN is the plan curvature. Note that these values are likely landscape and data specific and can be adjusted by the user. Landscape classification schemes that are based on terrain attributes are highly sensitive to short-range topographic variability (i.e. roughness) and can benefit from pre-processing the DEM with a smoothing filter to reduce the effect of surface roughness and emphasize the longer-range topographic signal. The feature_preserving_smoothing tool offers excellent performance in smoothing DEMs without removing the sharpness of breaks-in-slope.

Reference

Pennock, D.J., Zebarth, B.J., and DeJong, E. (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 40: 297-315.

See Also

feature_preserving_smoothing

Function Signature

def pennock_landform_classification(self, dem: Raster, slope_threshold: float = 3.0, prof_curv_threshold: float = 0.1, plan_curv_threshold: float = 0.0, z_factor: float = 1.0) -> Tuple[Raster, str]: ...

Project Links

WbW Homepage User Manual Support WbW