This tool can be used to extract channel networks from an input digital elevation models (dem) using one of three techniques that are based on local topography alone.

The Lindsay (2006) 'lower-quartile' method (variant='LQ') algorithm is a type of 'valley recognition' method. Other channel mapping methods, such as the Johnston and Rosenfeld (1975) algorithm, experience problems because channel profiles are not always 'v'-shaped, nor are they always apparent in small 3 x 3 windows. The lower-quartile method was developed as an alternative and more flexible valley recognition channel mapping technique. The lower-quartile method operates by running a filter over the DEM that calculates the percentile value of the centre cell with respect to the distribution of elevations within the filter window. The roving window is circular, the diameter of which should reflect the topographic variation of the area (e.g. the channel width or average hillslope length). If this variant is selected, the user must specify the filter_size parameter, in pixels, and this value should be an odd number (e.g. 3, 5, 7, etc.). The appropriateness of the selected window diameter will depend on the grid resolution relative to the scale of topographic features. Cells that are within the lower quartile of the distribution of elevations of their neighbourhood are flagged. Thus, the algorithm identifies grid cells that are in relatively low topographic positions at a local scale. This approach to channel mapping is only appropriate in fluvial landscapes. In regions containing numerous lakes and wetlands, the algorithm will pick out the edges of features.

The Johnston and Rosenfeld (1975) algorithm (variant='JandR') is a type of 'valley recognition' method and operates as follows: channel cells are flagged in a 3 x 3 window if the north and south neighbours are higher than the centre grid cell or if the east and west neighbours meet this same criterion. The group of cells that are flagged after one pass of the roving window constituted the drainage network. This method is best applied to DEMs that are relatively smooth and do not exhibit high levels of short-range roughness. As such, it may be desirable to use a smoothing filter before applying this tool. The feature_preserving_smoothing is a good option for removing DEM roughness while preserving the topographic information contain in breaks-in-slope (i.e. edges).

The Peucker and Douglas (1975) algorithm (variant='PandD') is one of the simplest and earliest algorithms for topography-based network extraction. Their 'valley recognition' method operates by passing a 2 x 2 roving window over a DEM and flagging the highest grid cell in each group of four. Once the window has passed over the entire DEM, channel grid cells are left unflagged. This method is also best applied to DEMs that are relatively smooth and do not exhibit high levels of short-range roughness. Pre-processing the DEM with the feature_preserving_smoothing tool may also be useful when applying this method.

Each of these methods of extracting valley networks result in line networks that can be wider than a single grid cell. As such, it is often desirable to thin the resulting network using a line-thinning algorithm. The option to perform line-thinning is provided by the tool as a post-processing step (line_thin=True).

References

Johnston, E. G., & Rosenfeld, A. (1975). Digital detection of pits, peaks, ridges, and ravines. IEEE Transactions on Systems, Man, and Cybernetics, (4), 472-480.

Lindsay, J. B. (2006). Sensitivity of channel mapping techniques to uncertainty in digital elevation data. International Journal of Geographical Information Science, 20(6), 669-692.

Peucker, T. K., & Douglas, D. H. (1975). Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Graphics and image processing, 4(4), 375-387.

See Also

feature_preserving_smoothing

Function Signature

def extract_valleys(self, dem: Raster, variant: str = "lq", line_thin: bool = False, filter_size: int = 5) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW