This tool can be used to calculate the maximum deviation from mean elevation, DEVmax (Lindsay et al. 2015) for each grid cell in a digital elevation model (DEM) across a range specified spatial scales. DEV is an elevation residual index and is essentially equivalent to a local elevation z-score. This attribute measures the relative topographic position as a fraction of local relief, and so is normalized to the local surface roughness. The multi-scaled calculation of DEVmax utilizes an integral image approach (Crow, 1984) to ensure highly efficient filtering that is invariant with filter size, which is the algorithm characteristic that allows for this densely sampled multi-scale analysis. In this way, max_elevation_deviation allows users to estimate the locally optimal scale with which to estimate DEV on a pixel-by-pixel basis. This multi-scaled version of local topographic position can reveal significant terrain characteristics and can aid with soil, vegetation, landform, and other mapping applications that depend on geomorphometric characterization.
The user must input a digital elevation model (DEM) (dem
). The range of scales that are evaluated in calculating DEVmax are determined by the user-specified min_scale
, max_scale
, and step
parameters. All filter radii between the minimum and maximum scales, increasing by step
, will be evaluated. The scale parameters are in units of grid cells and specify kernel size "radii" (r), such that:
d = 2r + 1
That is, a radii of 1, 2, 3... yields a square filters of dimension (d) 3 x 3, 5 x 5, 7 x 7...
DEV is estimated at each tested filter size and every grid cell is assigned the maximum DEV value across the evaluated scales.
Two output rasters will be generated, including the magnitude (DEVmax) and a second raster the assigns each pixel the scale at which DEVmax is encountered (DEVscale). The DEVscale raster can be very useful for revealing multi-scale landscape structure.
Lindsay J, Cockburn J, Russell H. 2015. An integral image approach to performing multi-scale topographic position analysis. Geomorphology, 245: 51-61.
DevFromMeanElev
, max_difference_from_mean, multiscale_elevation_percentile
def max_elevation_deviation(self, dem: Raster, min_scale: int = 1, max_scale: int = 100, step_size: int = 1) -> Tuple[Raster, Raster]: ...