License Information

Use of this function requires a license for Whitebox Workflows for Python Professional (WbW-Pro). Please visit www.whiteboxgeo.com to purchase a license.

Description

This tool interpolates LiDAR files using Sibson's interpolation method, sometimes referred to as natural-neighbour interpolation (not to be confused with nearest-neighbour interpolation, lidar_nearest_neighbour_gridding). Sibon's method is based on assigning weight to points for which inserting a grid point would result in captured areas of the Voronoi tessellation of the input point set. The larger the captured area, the higher the weight assigned to the associated point. One of the main advantages of this natural neighbour approach to interpolation over similar techniques, such as inverse-distance weighting (IDW lidar_idw_interpolation), is that there is no need to specify a search distance or other interpolation weighting parameters. Sibson's approach frequently provides a very suitable interpolation for LiDAR data. The method requires the calculation of a Delaunay triangulation, from which the Voronoi tessellation is calculated.

The user must specify the value of the IDW weight parameter (weight). The output grid can be based on any of the stored LiDAR point parameters (parameter), including elevation (in which case the output grid is a digital elevation model, DEM), intensity, class, return number, number of returns, scan angle values, and user data values. Similarly, the user may specify which point return values (returns) to include in the interpolation, including all points, last returns (including single return points), and first returns (including single return points).

The user must specify the grid resolution of the output raster (resolution), and optionally, the name of the input LiDAR file (input) and output raster (output). Note that if an input LiDAR file (input) is not specified by the user, the tool will search for all valid LiDAR (.las, .laz, *.zlidar) files contained within the current working directory. This feature can be useful when you need to interpolate a DEM for a large number of LiDAR files. This batch processing mode enables the tool to include a small buffer of points extending into adjacent tiles when interpolating an individual file. This can significantly reduce edge-effects when the output tiles are later mosaicked together. When run in this batch mode, the output file (output) also need not be specified; the tool will instead create an output file with the same name as each input LiDAR file, but with the .tif extension. This can provide a very efficient means for processing extremely large LiDAR data sets.

Users may excluded points from the interpolation based on point classification values, which follow the LAS classification scheme. Excluded classes are specified using the exclude_cls parameter. For example, to exclude all vegetation and building classified points from the interpolation, use --exclude_cls='3,4,5,6'. Users may also exclude points from the interpolation if they fall below or above the minimum (minz) or maximum (maxz) thresholds respectively. This can be a useful means of excluding anomalously high or low points. Note that points that are classified as low points (LAS class 7) or high noise (LAS class 18) are automatically excluded from the interpolation operation.

See Also

lidar_tin_gridding, lidar_nearest_neighbour_gridding, lidar_idw_interpolation

Function Signature

def lidar_sibson_interpolation(self, input_lidar: Optional[Lidar], interpolation_parameter: str = "elevation", resolution: float = 1.0, returns_included: str = "all", excluded_classes: Optional[List[int]] = None, min_elev: float = float('-inf'), max_elev: float = float('inf')) -> Optional[Raster]: ...

Project Links

WbW Homepage User Manual Support WbW