Elevation percentile (EP) is a measure of local topographic position (LTP). It expresses the vertical position for a digital elevation model (DEM) grid cell (z0) as the percentile of the elevation distribution within the filter window, such that:

EP = counti∈C(zi > z0) x (100 / nC)

where z0 is the elevation of the window's center grid cell, zi is the elevation of cell i contained within the neighboring set C, and nC is the number of grid cells contained within the window.

EP is unsigned and expressed as a percentage, bound between 0% and 100%. Quantile-based estimates (e.g., the median and interquartile range) are often used in nonparametric statistics to provide data variability estimates without assuming the distribution is normal. Thus, EP is largely unaffected by irregularly shaped elevation frequency distributions or by outliers in the DEM, resulting in a highly robust metric of LTP. In fact, elevation distributions within small to medium sized neighborhoods often exhibit skewed, multimodal, and non-Gaussian distributions, where the occurrence of elevation errors can often result in distribution outliers. Thus, based on these statistical characteristics, EP is considered one of the most robust representation of LTP.

The algorithm implemented by this tool uses the relatively efficient running-histogram filtering algorithm of Huang et al. (1979). Because most DEMs contain floating point data, elevation values must be rounded to be binned. The sig_digits parameter is used to determine the level of precision preserved during this binning process. The algorithm is parallelized to further aid with computational efficiency.

Neighbourhood size, or filter size, is specified in the x and y dimensions using the filterx and filtery flags. These dimensions should be odd, positive integer values (e.g. 3, 5, 7, 9, etc.).

References

Newman, D. R., Lindsay, J. B., and Cockburn, J. M. H. (2018). Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology, 312, 40-50.

Huang, T., Yang, G.J.T.G.Y. and Tang, G., 1979. A fast two-dimensional median filtering algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(1), pp.13-18.

See Also

DevFromMeanElev, DiffFromMeanElev

Function Signature

def elevation_percentile(self, dem: Raster, filter_size_x: int = 11, filter_size_y: int = 11, sig_digits: int = 2) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW