This tool can be used to fill in small gaps in a raster or digital elevation model (DEM). The gaps, or holes, must have recognized NoData values. If gaps do not currently have this characteristic, use the set_nodata_value tool and ensure that the data are stored using a raster format that supports NoData values. All valid, non-NoData values in the input raster will be assigned the same value in the output image.

The algorithm uses an inverse-distance weighted (IDW) scheme based on the valid values on the edge of NoData gaps to estimate gap values. The user must specify the filter size (filter), which determines the size of gap that is filled, and the IDW weight (weight).

The filter size, specified in grid cells, is used to determine how far the algorithm will search for valid, non-NoData values. Therefore, setting a larger filter size allows for the filling of larger gaps in the input raster.

The no_edges flag can be used to exclude NoData values that are connected to the edges of the raster. It is usually the case that irregularly shaped DEMs have large regions of NoData values along the containing raster edges. This flag can be used to exclude these regions from the gap-filling operation, leaving only interior gaps for filling.

See Also

set_nodata_value

Function Signature

def fill_missing_data(self, dem: Raster, filter_size: int = 11, weight: float = 2.0, exclude_edge_nodata: bool = False) -> Raster: ...

Project Links

WbW Homepage User Manual Support WbW