This tool performs a white top-hat transform on a LiDAR point cloud (input). A top-hat transform is a common digital image processing operation used for various tasks, such as feature extraction, background equalization, and image enhancement. When applied to a LiDAR point cloud, the white top-hat transform provides an estimate of height above ground, which is useful for modelling the vegetation canopy.

As an example, notice that the input point cloud on the top of the image below has a substantial amount of topographic variability. After applying the top-hat transform (bottom point cloud), all of this topographic variability has been removed and point elevations values effectively become height above ground.

The white top-hat transform is defined as the difference between a point's original elevation and its opening. The opening operation can be thought of as the local neighbourhood maximum of a previous local minimum surface. The user must specify the size of the neighbourhood using the radius parameter. Setting this parameter can require some experimentation. Generally, it is appropriate to use a radius of a few meters in non-urban landscapes. However, in urban areas, the radius may need to be set much larger, reflective of the size of the largest building.

If the input point cloud already has ground points classified, it may be better to use the height_above_ground, which simply measures the difference in height between each point and its nearest ground classified point within the search radius.

See Also

height_above_ground, tophat_transform, closing, opening

Function Signature

def lidar_tophat_transform(self, input: Lidar, search_radius: float) -> Lidar: ...

Project Links

WbW Homepage User Manual Support WbW