import numpy
from safe.impact_functions.core import (FunctionProvider,
get_hazard_layer,
get_exposure_layer,
get_question,
get_function_title,
format_int)
from safe.impact_functions.styles import flood_population_style as style_info
from safe.storage.raster import Raster
from safe.common.utilities import (ugettext as tr,
get_defaults,
verify)
from safe.impact_functions.core import format_int
from safe.common.tables import Table, TableRow
from third_party.odict import OrderedDict
[docs]class FloodEvacuationFunction(FunctionProvider):
"""Risk plugin for flood evacuation
:author AIFDR
:rating 4
:param requires category=='hazard' and \
subcategory in ['flood', 'tsunami'] and \
layertype=='raster' and \
unit=='m'
:param requires category=='exposure' and \
subcategory=='population' and \
layertype=='raster'
"""
title = tr('Need evacuation')
defaults = get_defaults()
# Function documentation
synopsis = tr('To assess the impacts of (flood or tsunami) inundation '
'on population.')
actions = tr('Provide details about how many people would likely need '
'to be evacuated, where they are located and what resources '
'would be required to support them.')
#citations = []
detailed_description = tr('The population subject to inundation '
'exceeding a threshold (default 1m) is '
'calculated and returned as a raster layer.'
'In addition the total number and the required '
'needs in terms of the BNPB (Perka 7) '
'are reported. The threshold can be changed and '
'even contain multiple numbers in which case '
'evacuation and needs are calculated using '
'the largest number with population breakdowns '
'provided for the smaller numbers. The '
'population '
'raster is resampled to the resolution of the '
'hazard raster and is rescaled so that the '
'resampled population counts reflect estimates '
'of population count per resampled cell. '
'The resulting impact layer has the same '
'resolution and reflects population count '
'per cell which are affected by inundation.')
permissible_hazard_input = tr('A hazard raster layer where each cell '
'represents flood depth (in meters).')
permissible_exposure_input = tr('An exposure raster layer where each '
'cell '
'represent population count.')
limitation = tr('The default threshold of 1 meter was selected based on '
'consensus, not hard evidence.')
# Configurable parameters
parameters = OrderedDict([
('thresholds [m]', [1.0]),
('postprocessors', OrderedDict([
('Gender', {'on': True}),
('Age', {
'on': True,
'params': OrderedDict([
('youth_ratio', defaults['YOUTH_RATIO']),
('adult_ratio', defaults['ADULT_RATIO']),
('elder_ratio', defaults['ELDER_RATIO'])])})]))])
[docs] def run(self, layers):
"""Risk plugin for flood population evacuation
Input
layers: List of layers expected to contain
H: Raster layer of flood depth
P: Raster layer of population data on the same grid as H
Counts number of people exposed to flood levels exceeding
specified threshold.
Return
Map of population exposed to flood levels exceeding the threshold
Table with number of people evacuated and supplies required
"""
# Identify hazard and exposure layers
inundation = get_hazard_layer(layers) # Flood inundation [m]
population = get_exposure_layer(layers)
question = get_question(inundation.get_name(),
population.get_name(),
self)
# Determine depths above which people are regarded affected [m]
# Use thresholds from inundation layer if specified
thresholds = self.parameters['thresholds [m]']
verify(isinstance(thresholds, list),
'Expected thresholds to be a list. Got %s' % str(thresholds))
# Extract data as numeric arrays
D = inundation.get_data(nan=0.0) # Depth
# Calculate impact as population exposed to depths > max threshold
P = population.get_data(nan=0.0, scaling=True)
# Calculate impact to intermediate thresholds
counts = []
for i, lo in enumerate(thresholds):
if i == len(thresholds) - 1:
# The last threshold
I = M = numpy.where(D >= lo, P, 0)
else:
# Intermediate thresholds
hi = thresholds[i + 1]
M = numpy.where((D >= lo) * (D < hi), P, 0)
# Count
val = int(numpy.sum(M))
# Don't show digits less than a 1000
if val > 1000:
val = val // 1000 * 1000
counts.append(val)
# Count totals
evacuated = counts[-1]
total = int(numpy.sum(P))
# Don't show digits less than a 1000
if total > 1000:
total = total // 1000 * 1000
# Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan
# FIXME: Refactor and share
# 400g per person per day
rice = int(evacuated * 2.8)
# 2.5L per person per day
drinking_water = int(evacuated * 17.5)
# 15L per person per day
water = int(evacuated * 105)
# assume 5 people per family (not in perka)
family_kits = int(evacuated / 5)
# 20 people per toilet
toilets = int(evacuated / 20)
# Generate impact report for the pdf map
table_body = [question,
TableRow([(tr('People in %.1f m of water') %
thresholds[-1]),
'%s*' % format_int(evacuated)],
header=True),
TableRow(tr('* Number is rounded down (in thousands)'),
header=False),
TableRow(tr('Map shows population density needing '
'evacuation')),
TableRow([tr('Needs per week'), tr('Total')],
header=True),
[tr('Rice [kg]'), format_int(rice)],
[tr('Drinking Water [l]'), format_int(drinking_water)],
[tr('Clean Water [l]'), format_int(water)],
[tr('Family Kits'), format_int(family_kits)],
[tr('Toilets'), format_int(toilets)]]
impact_table = Table(table_body).toNewlineFreeString()
table_body.append(TableRow(tr('Action Checklist:'), header=True))
table_body.append(TableRow(tr('How will warnings be disseminated?')))
table_body.append(TableRow(tr('How will we reach stranded people?')))
table_body.append(TableRow(tr('Do we have enough relief items?')))
table_body.append(TableRow(tr('If yes, where are they located and how '
'will we distribute them?')))
table_body.append(TableRow(tr('If no, where can we obtain additional '
'relief items from and how will we '
'transport them to here?')))
# Extend impact report for on-screen display
table_body.extend([TableRow(tr('Notes'), header=True),
tr('Total population: %s') % format_int(total),
tr('People need evacuation if flood levels '
'exceed %(eps).1f m') % {'eps': thresholds[-1]},
tr('Minimum needs are defined in BNPB '
'regulation 7/2008'),
tr('All values are rounded up to the nearest '
'integer in order to avoid representing human '
'lives as fractionals.')])
if len(counts) > 1:
table_body.append(TableRow(tr('Detailed breakdown'), header=True))
for i, val in enumerate(counts[:-1]):
s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i')
% {'lo': thresholds[i],
'hi': thresholds[i + 1],
'val': format_int(val)})
table_body.append(TableRow(s, header=False))
impact_summary = Table(table_body).toNewlineFreeString()
map_title = tr('People in need of evacuation')
# Generate 8 equidistant classes across the range of flooded population
# 8 is the number of classes in the predefined flood population style
# as imported
classes = numpy.linspace(numpy.nanmin(I.flat[:]),
numpy.nanmax(I.flat[:]), 8)
# Work out how many decimals to use
# Modify labels in existing flood style to show quantities
style_classes = style_info['style_classes']
style_classes[1]['label'] = tr('Low [%i people/cell]') % classes[1]
style_classes[4]['label'] = tr('Medium [%i people/cell]')\
% classes[4]
style_classes[7]['label'] = tr('High [%i people/cell]') % classes[7]
# Override associated quantities in colour style
for i in range(len(classes)):
if i == 0:
transparency = 100
else:
transparency = 0
# int & round Added by Tim in 1.2 - class is rounded to the
# nearest int because we prefer to not categorise people as being
# e.g. '0.4 people'. Fixes #542
style_classes[i]['quantity'] = int(round(classes[i]))
style_classes[i]['transparency'] = transparency
# Title
style_info['legend_title'] = tr('Population Density')
# Create raster object and return
R = Raster(I,
projection=inundation.get_projection(),
geotransform=inundation.get_geotransform(),
name=tr('Population which %s') % get_function_title(self),
keywords={'impact_summary': impact_summary,
'impact_table': impact_table,
'map_title': map_title},
style_info=style_info)
return R