Source code for safe.impact_functions.inundation.flood_population_evacuation

import numpy
from safe.impact_functions.core import (FunctionProvider,
                                        get_hazard_layer,
                                        get_exposure_layer,
                                        get_question,
                                        get_function_title,
                                        format_int)
from safe.impact_functions.styles import flood_population_style as style_info
from safe.storage.raster import Raster
from safe.common.utilities import (ugettext as tr,
                                   get_defaults,
                                   verify)
from safe.impact_functions.core import format_int
from safe.common.tables import Table, TableRow
from third_party.odict import OrderedDict


[docs]class FloodEvacuationFunction(FunctionProvider): """Risk plugin for flood evacuation :author AIFDR :rating 4 :param requires category=='hazard' and \ subcategory in ['flood', 'tsunami'] and \ layertype=='raster' and \ unit=='m' :param requires category=='exposure' and \ subcategory=='population' and \ layertype=='raster' """ title = tr('Need evacuation') defaults = get_defaults() # Function documentation synopsis = tr('To assess the impacts of (flood or tsunami) inundation ' 'on population.') actions = tr('Provide details about how many people would likely need ' 'to be evacuated, where they are located and what resources ' 'would be required to support them.') #citations = [] detailed_description = tr('The population subject to inundation ' 'exceeding a threshold (default 1m) is ' 'calculated and returned as a raster layer.' 'In addition the total number and the required ' 'needs in terms of the BNPB (Perka 7) ' 'are reported. The threshold can be changed and ' 'even contain multiple numbers in which case ' 'evacuation and needs are calculated using ' 'the largest number with population breakdowns ' 'provided for the smaller numbers. The ' 'population ' 'raster is resampled to the resolution of the ' 'hazard raster and is rescaled so that the ' 'resampled population counts reflect estimates ' 'of population count per resampled cell. ' 'The resulting impact layer has the same ' 'resolution and reflects population count ' 'per cell which are affected by inundation.') permissible_hazard_input = tr('A hazard raster layer where each cell ' 'represents flood depth (in meters).') permissible_exposure_input = tr('An exposure raster layer where each ' 'cell ' 'represent population count.') limitation = tr('The default threshold of 1 meter was selected based on ' 'consensus, not hard evidence.') # Configurable parameters parameters = OrderedDict([ ('thresholds [m]', [1.0]), ('postprocessors', OrderedDict([ ('Gender', {'on': True}), ('Age', { 'on': True, 'params': OrderedDict([ ('youth_ratio', defaults['YOUTH_RATIO']), ('adult_ratio', defaults['ADULT_RATIO']), ('elder_ratio', defaults['ELDER_RATIO'])])})]))])
[docs] def run(self, layers): """Risk plugin for flood population evacuation Input layers: List of layers expected to contain H: Raster layer of flood depth P: Raster layer of population data on the same grid as H Counts number of people exposed to flood levels exceeding specified threshold. Return Map of population exposed to flood levels exceeding the threshold Table with number of people evacuated and supplies required """ # Identify hazard and exposure layers inundation = get_hazard_layer(layers) # Flood inundation [m] population = get_exposure_layer(layers) question = get_question(inundation.get_name(), population.get_name(), self) # Determine depths above which people are regarded affected [m] # Use thresholds from inundation layer if specified thresholds = self.parameters['thresholds [m]'] verify(isinstance(thresholds, list), 'Expected thresholds to be a list. Got %s' % str(thresholds)) # Extract data as numeric arrays D = inundation.get_data(nan=0.0) # Depth # Calculate impact as population exposed to depths > max threshold P = population.get_data(nan=0.0, scaling=True) # Calculate impact to intermediate thresholds counts = [] for i, lo in enumerate(thresholds): if i == len(thresholds) - 1: # The last threshold I = M = numpy.where(D >= lo, P, 0) else: # Intermediate thresholds hi = thresholds[i + 1] M = numpy.where((D >= lo) * (D < hi), P, 0) # Count val = int(numpy.sum(M)) # Don't show digits less than a 1000 if val > 1000: val = val // 1000 * 1000 counts.append(val) # Count totals evacuated = counts[-1] total = int(numpy.sum(P)) # Don't show digits less than a 1000 if total > 1000: total = total // 1000 * 1000 # Calculate estimated needs based on BNPB Perka 7/2008 minimum bantuan # FIXME: Refactor and share # 400g per person per day rice = int(evacuated * 2.8) # 2.5L per person per day drinking_water = int(evacuated * 17.5) # 15L per person per day water = int(evacuated * 105) # assume 5 people per family (not in perka) family_kits = int(evacuated / 5) # 20 people per toilet toilets = int(evacuated / 20) # Generate impact report for the pdf map table_body = [question, TableRow([(tr('People in %.1f m of water') % thresholds[-1]), '%s*' % format_int(evacuated)], header=True), TableRow(tr('* Number is rounded to the nearest 1000'), header=False), TableRow(tr('Map shows population density needing ' 'evacuation')), TableRow([tr('Needs per week'), tr('Total')], header=True), [tr('Rice [kg]'), format_int(rice)], [tr('Drinking Water [l]'), format_int(drinking_water)], [tr('Clean Water [l]'), format_int(water)], [tr('Family Kits'), format_int(family_kits)], [tr('Toilets'), format_int(toilets)]] impact_table = Table(table_body).toNewlineFreeString() table_body.append(TableRow(tr('Action Checklist:'), header=True)) table_body.append(TableRow(tr('How will warnings be disseminated?'))) table_body.append(TableRow(tr('How will we reach stranded people?'))) table_body.append(TableRow(tr('Do we have enough relief items?'))) table_body.append(TableRow(tr('If yes, where are they located and how ' 'will we distribute them?'))) table_body.append(TableRow(tr('If no, where can we obtain additional ' 'relief items from and how will we ' 'transport them to here?'))) # Extend impact report for on-screen display table_body.extend([TableRow(tr('Notes'), header=True), tr('Total population: %s') % format_int(total), tr('People need evacuation if flood levels ' 'exceed %(eps).1f m') % {'eps': thresholds[-1]}, tr('Minimum needs are defined in BNPB ' 'regulation 7/2008')]) if len(counts) > 1: table_body.append(TableRow(tr('Detailed breakdown'), header=True)) for i, val in enumerate(counts[:-1]): s = (tr('People in %(lo).1f m to %(hi).1f m of water: %(val)i') % {'lo': thresholds[i], 'hi': thresholds[i + 1], 'val': format_int(val)}) table_body.append(TableRow(s, header=False)) impact_summary = Table(table_body).toNewlineFreeString() map_title = tr('People in need of evacuation') # Generate 8 equidistant classes across the range of flooded population # 8 is the number of classes in the predefined flood population style # as imported classes = numpy.linspace(numpy.nanmin(I.flat[:]), numpy.nanmax(I.flat[:]), 8) # Work out how many decimals to use # Modify labels in existing flood style to show quantities style_classes = style_info['style_classes'] style_classes[1]['label'] = tr('Low [%.2f people/cell]') % classes[1] style_classes[4]['label'] = tr('Medium [%.2f people/cell]')\ % classes[4] style_classes[7]['label'] = tr('High [%.2f people/cell]') % classes[7] # Override associated quantities in colour style for i in range(len(classes)): if i == 0: transparency = 100 else: transparency = 0 style_classes[i]['quantity'] = classes[i] style_classes[i]['transparency'] = transparency # Title style_info['legend_title'] = tr('Population Density') # Create raster object and return R = Raster(I, projection=inundation.get_projection(), geotransform=inundation.get_geotransform(), name=tr('Population which %s') % get_function_title(self), keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title}, style_info=style_info) return R